This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplication in a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusaddf.u | |- ( ph -> U = ( R /s .~ ) ) |
|
| qusaddf.v | |- ( ph -> V = ( Base ` R ) ) |
||
| qusaddf.r | |- ( ph -> .~ Er V ) |
||
| qusaddf.z | |- ( ph -> R e. Z ) |
||
| qusaddf.e | |- ( ph -> ( ( a .~ p /\ b .~ q ) -> ( a .x. b ) .~ ( p .x. q ) ) ) |
||
| qusaddf.c | |- ( ( ph /\ ( p e. V /\ q e. V ) ) -> ( p .x. q ) e. V ) |
||
| qusmulf.p | |- .x. = ( .r ` R ) |
||
| qusmulf.a | |- .xb = ( .r ` U ) |
||
| Assertion | qusmulval | |- ( ( ph /\ X e. V /\ Y e. V ) -> ( [ X ] .~ .xb [ Y ] .~ ) = [ ( X .x. Y ) ] .~ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusaddf.u | |- ( ph -> U = ( R /s .~ ) ) |
|
| 2 | qusaddf.v | |- ( ph -> V = ( Base ` R ) ) |
|
| 3 | qusaddf.r | |- ( ph -> .~ Er V ) |
|
| 4 | qusaddf.z | |- ( ph -> R e. Z ) |
|
| 5 | qusaddf.e | |- ( ph -> ( ( a .~ p /\ b .~ q ) -> ( a .x. b ) .~ ( p .x. q ) ) ) |
|
| 6 | qusaddf.c | |- ( ( ph /\ ( p e. V /\ q e. V ) ) -> ( p .x. q ) e. V ) |
|
| 7 | qusmulf.p | |- .x. = ( .r ` R ) |
|
| 8 | qusmulf.a | |- .xb = ( .r ` U ) |
|
| 9 | eqid | |- ( x e. V |-> [ x ] .~ ) = ( x e. V |-> [ x ] .~ ) |
|
| 10 | fvex | |- ( Base ` R ) e. _V |
|
| 11 | 2 10 | eqeltrdi | |- ( ph -> V e. _V ) |
| 12 | erex | |- ( .~ Er V -> ( V e. _V -> .~ e. _V ) ) |
|
| 13 | 3 11 12 | sylc | |- ( ph -> .~ e. _V ) |
| 14 | 1 2 9 13 4 | qusval | |- ( ph -> U = ( ( x e. V |-> [ x ] .~ ) "s R ) ) |
| 15 | 1 2 9 13 4 | quslem | |- ( ph -> ( x e. V |-> [ x ] .~ ) : V -onto-> ( V /. .~ ) ) |
| 16 | 14 2 15 4 7 8 | imasmulr | |- ( ph -> .xb = U_ p e. V U_ q e. V { <. <. ( ( x e. V |-> [ x ] .~ ) ` p ) , ( ( x e. V |-> [ x ] .~ ) ` q ) >. , ( ( x e. V |-> [ x ] .~ ) ` ( p .x. q ) ) >. } ) |
| 17 | 1 2 3 4 5 6 9 16 | qusaddvallem | |- ( ( ph /\ X e. V /\ Y e. V ) -> ( [ X ] .~ .xb [ Y ] .~ ) = [ ( X .x. Y ) ] .~ ) |