This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Demonstration of ring homomorphism. (Contributed by Mario Carneiro, 13-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isrhmd.b | |- B = ( Base ` R ) |
|
| isrhmd.o | |- .1. = ( 1r ` R ) |
||
| isrhmd.n | |- N = ( 1r ` S ) |
||
| isrhmd.t | |- .x. = ( .r ` R ) |
||
| isrhmd.u | |- .X. = ( .r ` S ) |
||
| isrhmd.r | |- ( ph -> R e. Ring ) |
||
| isrhmd.s | |- ( ph -> S e. Ring ) |
||
| isrhmd.ho | |- ( ph -> ( F ` .1. ) = N ) |
||
| isrhmd.ht | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) ) |
||
| isrhm2d.f | |- ( ph -> F e. ( R GrpHom S ) ) |
||
| Assertion | isrhm2d | |- ( ph -> F e. ( R RingHom S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrhmd.b | |- B = ( Base ` R ) |
|
| 2 | isrhmd.o | |- .1. = ( 1r ` R ) |
|
| 3 | isrhmd.n | |- N = ( 1r ` S ) |
|
| 4 | isrhmd.t | |- .x. = ( .r ` R ) |
|
| 5 | isrhmd.u | |- .X. = ( .r ` S ) |
|
| 6 | isrhmd.r | |- ( ph -> R e. Ring ) |
|
| 7 | isrhmd.s | |- ( ph -> S e. Ring ) |
|
| 8 | isrhmd.ho | |- ( ph -> ( F ` .1. ) = N ) |
|
| 9 | isrhmd.ht | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) ) |
|
| 10 | isrhm2d.f | |- ( ph -> F e. ( R GrpHom S ) ) |
|
| 11 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 12 | 11 | ringmgp | |- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
| 13 | 6 12 | syl | |- ( ph -> ( mulGrp ` R ) e. Mnd ) |
| 14 | eqid | |- ( mulGrp ` S ) = ( mulGrp ` S ) |
|
| 15 | 14 | ringmgp | |- ( S e. Ring -> ( mulGrp ` S ) e. Mnd ) |
| 16 | 7 15 | syl | |- ( ph -> ( mulGrp ` S ) e. Mnd ) |
| 17 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 18 | 1 17 | ghmf | |- ( F e. ( R GrpHom S ) -> F : B --> ( Base ` S ) ) |
| 19 | 10 18 | syl | |- ( ph -> F : B --> ( Base ` S ) ) |
| 20 | 9 | ralrimivva | |- ( ph -> A. x e. B A. y e. B ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) ) |
| 21 | 11 2 | ringidval | |- .1. = ( 0g ` ( mulGrp ` R ) ) |
| 22 | 21 | fveq2i | |- ( F ` .1. ) = ( F ` ( 0g ` ( mulGrp ` R ) ) ) |
| 23 | 14 3 | ringidval | |- N = ( 0g ` ( mulGrp ` S ) ) |
| 24 | 8 22 23 | 3eqtr3g | |- ( ph -> ( F ` ( 0g ` ( mulGrp ` R ) ) ) = ( 0g ` ( mulGrp ` S ) ) ) |
| 25 | 19 20 24 | 3jca | |- ( ph -> ( F : B --> ( Base ` S ) /\ A. x e. B A. y e. B ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) /\ ( F ` ( 0g ` ( mulGrp ` R ) ) ) = ( 0g ` ( mulGrp ` S ) ) ) ) |
| 26 | 11 1 | mgpbas | |- B = ( Base ` ( mulGrp ` R ) ) |
| 27 | 14 17 | mgpbas | |- ( Base ` S ) = ( Base ` ( mulGrp ` S ) ) |
| 28 | 11 4 | mgpplusg | |- .x. = ( +g ` ( mulGrp ` R ) ) |
| 29 | 14 5 | mgpplusg | |- .X. = ( +g ` ( mulGrp ` S ) ) |
| 30 | eqid | |- ( 0g ` ( mulGrp ` R ) ) = ( 0g ` ( mulGrp ` R ) ) |
|
| 31 | eqid | |- ( 0g ` ( mulGrp ` S ) ) = ( 0g ` ( mulGrp ` S ) ) |
|
| 32 | 26 27 28 29 30 31 | ismhm | |- ( F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) <-> ( ( ( mulGrp ` R ) e. Mnd /\ ( mulGrp ` S ) e. Mnd ) /\ ( F : B --> ( Base ` S ) /\ A. x e. B A. y e. B ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) /\ ( F ` ( 0g ` ( mulGrp ` R ) ) ) = ( 0g ` ( mulGrp ` S ) ) ) ) ) |
| 33 | 13 16 25 32 | syl21anbrc | |- ( ph -> F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) |
| 34 | 10 33 | jca | |- ( ph -> ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) |
| 35 | 11 14 | isrhm | |- ( F e. ( R RingHom S ) <-> ( ( R e. Ring /\ S e. Ring ) /\ ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) ) |
| 36 | 6 7 34 35 | syl21anbrc | |- ( ph -> F e. ( R RingHom S ) ) |