This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The preimage of an ideal by a ring homomorphism is an ideal. (Contributed by Thierry Arnoux, 30-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rhmpreimaidl.i | |- I = ( LIdeal ` R ) |
|
| Assertion | rhmpreimaidl | |- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> ( `' F " J ) e. I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmpreimaidl.i | |- I = ( LIdeal ` R ) |
|
| 2 | cnvimass | |- ( `' F " J ) C_ dom F |
|
| 3 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 4 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 5 | 3 4 | rhmf | |- ( F e. ( R RingHom S ) -> F : ( Base ` R ) --> ( Base ` S ) ) |
| 6 | 2 5 | fssdm | |- ( F e. ( R RingHom S ) -> ( `' F " J ) C_ ( Base ` R ) ) |
| 7 | 6 | adantr | |- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> ( `' F " J ) C_ ( Base ` R ) ) |
| 8 | 5 | adantr | |- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> F : ( Base ` R ) --> ( Base ` S ) ) |
| 9 | 8 | ffund | |- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> Fun F ) |
| 10 | rhmrcl1 | |- ( F e. ( R RingHom S ) -> R e. Ring ) |
|
| 11 | 10 | adantr | |- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> R e. Ring ) |
| 12 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 13 | 3 12 | ring0cl | |- ( R e. Ring -> ( 0g ` R ) e. ( Base ` R ) ) |
| 14 | 11 13 | syl | |- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> ( 0g ` R ) e. ( Base ` R ) ) |
| 15 | 8 | fdmd | |- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> dom F = ( Base ` R ) ) |
| 16 | 14 15 | eleqtrrd | |- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> ( 0g ` R ) e. dom F ) |
| 17 | rhmghm | |- ( F e. ( R RingHom S ) -> F e. ( R GrpHom S ) ) |
|
| 18 | ghmmhm | |- ( F e. ( R GrpHom S ) -> F e. ( R MndHom S ) ) |
|
| 19 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 20 | 12 19 | mhm0 | |- ( F e. ( R MndHom S ) -> ( F ` ( 0g ` R ) ) = ( 0g ` S ) ) |
| 21 | 17 18 20 | 3syl | |- ( F e. ( R RingHom S ) -> ( F ` ( 0g ` R ) ) = ( 0g ` S ) ) |
| 22 | 21 | adantr | |- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> ( F ` ( 0g ` R ) ) = ( 0g ` S ) ) |
| 23 | rhmrcl2 | |- ( F e. ( R RingHom S ) -> S e. Ring ) |
|
| 24 | eqid | |- ( LIdeal ` S ) = ( LIdeal ` S ) |
|
| 25 | 24 19 | lidl0cl | |- ( ( S e. Ring /\ J e. ( LIdeal ` S ) ) -> ( 0g ` S ) e. J ) |
| 26 | 23 25 | sylan | |- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> ( 0g ` S ) e. J ) |
| 27 | 22 26 | eqeltrd | |- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> ( F ` ( 0g ` R ) ) e. J ) |
| 28 | fvimacnv | |- ( ( Fun F /\ ( 0g ` R ) e. dom F ) -> ( ( F ` ( 0g ` R ) ) e. J <-> ( 0g ` R ) e. ( `' F " J ) ) ) |
|
| 29 | 28 | biimpa | |- ( ( ( Fun F /\ ( 0g ` R ) e. dom F ) /\ ( F ` ( 0g ` R ) ) e. J ) -> ( 0g ` R ) e. ( `' F " J ) ) |
| 30 | 9 16 27 29 | syl21anc | |- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> ( 0g ` R ) e. ( `' F " J ) ) |
| 31 | 30 | ne0d | |- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> ( `' F " J ) =/= (/) ) |
| 32 | 8 | ffnd | |- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> F Fn ( Base ` R ) ) |
| 33 | 32 | ad3antrrr | |- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> F Fn ( Base ` R ) ) |
| 34 | 11 | ad3antrrr | |- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> R e. Ring ) |
| 35 | simpllr | |- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> x e. ( Base ` R ) ) |
|
| 36 | 6 | ad2antrr | |- ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) -> ( `' F " J ) C_ ( Base ` R ) ) |
| 37 | 36 | sselda | |- ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) -> a e. ( Base ` R ) ) |
| 38 | 37 | adantr | |- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> a e. ( Base ` R ) ) |
| 39 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 40 | 3 39 | ringcl | |- ( ( R e. Ring /\ x e. ( Base ` R ) /\ a e. ( Base ` R ) ) -> ( x ( .r ` R ) a ) e. ( Base ` R ) ) |
| 41 | 34 35 38 40 | syl3anc | |- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( x ( .r ` R ) a ) e. ( Base ` R ) ) |
| 42 | 36 | adantr | |- ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) -> ( `' F " J ) C_ ( Base ` R ) ) |
| 43 | 42 | sselda | |- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> b e. ( Base ` R ) ) |
| 44 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 45 | 3 44 | ringacl | |- ( ( R e. Ring /\ ( x ( .r ` R ) a ) e. ( Base ` R ) /\ b e. ( Base ` R ) ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. ( Base ` R ) ) |
| 46 | 34 41 43 45 | syl3anc | |- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. ( Base ` R ) ) |
| 47 | 17 | ad4antr | |- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> F e. ( R GrpHom S ) ) |
| 48 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 49 | 3 44 48 | ghmlin | |- ( ( F e. ( R GrpHom S ) /\ ( x ( .r ` R ) a ) e. ( Base ` R ) /\ b e. ( Base ` R ) ) -> ( F ` ( ( x ( .r ` R ) a ) ( +g ` R ) b ) ) = ( ( F ` ( x ( .r ` R ) a ) ) ( +g ` S ) ( F ` b ) ) ) |
| 50 | 47 41 43 49 | syl3anc | |- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( F ` ( ( x ( .r ` R ) a ) ( +g ` R ) b ) ) = ( ( F ` ( x ( .r ` R ) a ) ) ( +g ` S ) ( F ` b ) ) ) |
| 51 | simp-4l | |- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> F e. ( R RingHom S ) ) |
|
| 52 | 51 23 | syl | |- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> S e. Ring ) |
| 53 | simpr | |- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> J e. ( LIdeal ` S ) ) |
|
| 54 | 53 | ad3antrrr | |- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> J e. ( LIdeal ` S ) ) |
| 55 | eqid | |- ( .r ` S ) = ( .r ` S ) |
|
| 56 | 3 39 55 | rhmmul | |- ( ( F e. ( R RingHom S ) /\ x e. ( Base ` R ) /\ a e. ( Base ` R ) ) -> ( F ` ( x ( .r ` R ) a ) ) = ( ( F ` x ) ( .r ` S ) ( F ` a ) ) ) |
| 57 | 51 35 38 56 | syl3anc | |- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( F ` ( x ( .r ` R ) a ) ) = ( ( F ` x ) ( .r ` S ) ( F ` a ) ) ) |
| 58 | 8 | ffvelcdmda | |- ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) -> ( F ` x ) e. ( Base ` S ) ) |
| 59 | 58 | ad2antrr | |- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( F ` x ) e. ( Base ` S ) ) |
| 60 | simplr | |- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> a e. ( `' F " J ) ) |
|
| 61 | elpreima | |- ( F Fn ( Base ` R ) -> ( a e. ( `' F " J ) <-> ( a e. ( Base ` R ) /\ ( F ` a ) e. J ) ) ) |
|
| 62 | 61 | simplbda | |- ( ( F Fn ( Base ` R ) /\ a e. ( `' F " J ) ) -> ( F ` a ) e. J ) |
| 63 | 33 60 62 | syl2anc | |- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( F ` a ) e. J ) |
| 64 | 24 4 55 | lidlmcl | |- ( ( ( S e. Ring /\ J e. ( LIdeal ` S ) ) /\ ( ( F ` x ) e. ( Base ` S ) /\ ( F ` a ) e. J ) ) -> ( ( F ` x ) ( .r ` S ) ( F ` a ) ) e. J ) |
| 65 | 52 54 59 63 64 | syl22anc | |- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( ( F ` x ) ( .r ` S ) ( F ` a ) ) e. J ) |
| 66 | 57 65 | eqeltrd | |- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( F ` ( x ( .r ` R ) a ) ) e. J ) |
| 67 | simpr | |- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> b e. ( `' F " J ) ) |
|
| 68 | elpreima | |- ( F Fn ( Base ` R ) -> ( b e. ( `' F " J ) <-> ( b e. ( Base ` R ) /\ ( F ` b ) e. J ) ) ) |
|
| 69 | 68 | simplbda | |- ( ( F Fn ( Base ` R ) /\ b e. ( `' F " J ) ) -> ( F ` b ) e. J ) |
| 70 | 33 67 69 | syl2anc | |- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( F ` b ) e. J ) |
| 71 | 24 48 | lidlacl | |- ( ( ( S e. Ring /\ J e. ( LIdeal ` S ) ) /\ ( ( F ` ( x ( .r ` R ) a ) ) e. J /\ ( F ` b ) e. J ) ) -> ( ( F ` ( x ( .r ` R ) a ) ) ( +g ` S ) ( F ` b ) ) e. J ) |
| 72 | 52 54 66 70 71 | syl22anc | |- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( ( F ` ( x ( .r ` R ) a ) ) ( +g ` S ) ( F ` b ) ) e. J ) |
| 73 | 50 72 | eqeltrd | |- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( F ` ( ( x ( .r ` R ) a ) ( +g ` R ) b ) ) e. J ) |
| 74 | 33 46 73 | elpreimad | |- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. ( `' F " J ) ) |
| 75 | 74 | anasss | |- ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ ( a e. ( `' F " J ) /\ b e. ( `' F " J ) ) ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. ( `' F " J ) ) |
| 76 | 75 | ralrimivva | |- ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) -> A. a e. ( `' F " J ) A. b e. ( `' F " J ) ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. ( `' F " J ) ) |
| 77 | 76 | ralrimiva | |- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> A. x e. ( Base ` R ) A. a e. ( `' F " J ) A. b e. ( `' F " J ) ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. ( `' F " J ) ) |
| 78 | 1 3 44 39 | islidl | |- ( ( `' F " J ) e. I <-> ( ( `' F " J ) C_ ( Base ` R ) /\ ( `' F " J ) =/= (/) /\ A. x e. ( Base ` R ) A. a e. ( `' F " J ) A. b e. ( `' F " J ) ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. ( `' F " J ) ) ) |
| 79 | 7 31 77 78 | syl3anbrc | |- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> ( `' F " J ) e. I ) |