This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If Y is a normal subgroup of G , then the "natural map" from elements to their cosets is a group homomorphism from G to G / Y . (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by Mario Carneiro, 18-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusghm.x | |- X = ( Base ` G ) |
|
| qusghm.h | |- H = ( G /s ( G ~QG Y ) ) |
||
| qusghm.f | |- F = ( x e. X |-> [ x ] ( G ~QG Y ) ) |
||
| Assertion | qusghm | |- ( Y e. ( NrmSGrp ` G ) -> F e. ( G GrpHom H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusghm.x | |- X = ( Base ` G ) |
|
| 2 | qusghm.h | |- H = ( G /s ( G ~QG Y ) ) |
|
| 3 | qusghm.f | |- F = ( x e. X |-> [ x ] ( G ~QG Y ) ) |
|
| 4 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 5 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 6 | eqid | |- ( +g ` H ) = ( +g ` H ) |
|
| 7 | nsgsubg | |- ( Y e. ( NrmSGrp ` G ) -> Y e. ( SubGrp ` G ) ) |
|
| 8 | subgrcl | |- ( Y e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 9 | 7 8 | syl | |- ( Y e. ( NrmSGrp ` G ) -> G e. Grp ) |
| 10 | 2 | qusgrp | |- ( Y e. ( NrmSGrp ` G ) -> H e. Grp ) |
| 11 | 2 1 4 | quseccl | |- ( ( Y e. ( NrmSGrp ` G ) /\ x e. X ) -> [ x ] ( G ~QG Y ) e. ( Base ` H ) ) |
| 12 | 11 3 | fmptd | |- ( Y e. ( NrmSGrp ` G ) -> F : X --> ( Base ` H ) ) |
| 13 | 2 1 5 6 | qusadd | |- ( ( Y e. ( NrmSGrp ` G ) /\ y e. X /\ z e. X ) -> ( [ y ] ( G ~QG Y ) ( +g ` H ) [ z ] ( G ~QG Y ) ) = [ ( y ( +g ` G ) z ) ] ( G ~QG Y ) ) |
| 14 | 13 | 3expb | |- ( ( Y e. ( NrmSGrp ` G ) /\ ( y e. X /\ z e. X ) ) -> ( [ y ] ( G ~QG Y ) ( +g ` H ) [ z ] ( G ~QG Y ) ) = [ ( y ( +g ` G ) z ) ] ( G ~QG Y ) ) |
| 15 | eceq1 | |- ( x = y -> [ x ] ( G ~QG Y ) = [ y ] ( G ~QG Y ) ) |
|
| 16 | ovex | |- ( G ~QG Y ) e. _V |
|
| 17 | ecexg | |- ( ( G ~QG Y ) e. _V -> [ x ] ( G ~QG Y ) e. _V ) |
|
| 18 | 16 17 | ax-mp | |- [ x ] ( G ~QG Y ) e. _V |
| 19 | 15 3 18 | fvmpt3i | |- ( y e. X -> ( F ` y ) = [ y ] ( G ~QG Y ) ) |
| 20 | 19 | ad2antrl | |- ( ( Y e. ( NrmSGrp ` G ) /\ ( y e. X /\ z e. X ) ) -> ( F ` y ) = [ y ] ( G ~QG Y ) ) |
| 21 | eceq1 | |- ( x = z -> [ x ] ( G ~QG Y ) = [ z ] ( G ~QG Y ) ) |
|
| 22 | 21 3 18 | fvmpt3i | |- ( z e. X -> ( F ` z ) = [ z ] ( G ~QG Y ) ) |
| 23 | 22 | ad2antll | |- ( ( Y e. ( NrmSGrp ` G ) /\ ( y e. X /\ z e. X ) ) -> ( F ` z ) = [ z ] ( G ~QG Y ) ) |
| 24 | 20 23 | oveq12d | |- ( ( Y e. ( NrmSGrp ` G ) /\ ( y e. X /\ z e. X ) ) -> ( ( F ` y ) ( +g ` H ) ( F ` z ) ) = ( [ y ] ( G ~QG Y ) ( +g ` H ) [ z ] ( G ~QG Y ) ) ) |
| 25 | 1 5 | grpcl | |- ( ( G e. Grp /\ y e. X /\ z e. X ) -> ( y ( +g ` G ) z ) e. X ) |
| 26 | 25 | 3expb | |- ( ( G e. Grp /\ ( y e. X /\ z e. X ) ) -> ( y ( +g ` G ) z ) e. X ) |
| 27 | 9 26 | sylan | |- ( ( Y e. ( NrmSGrp ` G ) /\ ( y e. X /\ z e. X ) ) -> ( y ( +g ` G ) z ) e. X ) |
| 28 | eceq1 | |- ( x = ( y ( +g ` G ) z ) -> [ x ] ( G ~QG Y ) = [ ( y ( +g ` G ) z ) ] ( G ~QG Y ) ) |
|
| 29 | 28 3 18 | fvmpt3i | |- ( ( y ( +g ` G ) z ) e. X -> ( F ` ( y ( +g ` G ) z ) ) = [ ( y ( +g ` G ) z ) ] ( G ~QG Y ) ) |
| 30 | 27 29 | syl | |- ( ( Y e. ( NrmSGrp ` G ) /\ ( y e. X /\ z e. X ) ) -> ( F ` ( y ( +g ` G ) z ) ) = [ ( y ( +g ` G ) z ) ] ( G ~QG Y ) ) |
| 31 | 14 24 30 | 3eqtr4rd | |- ( ( Y e. ( NrmSGrp ` G ) /\ ( y e. X /\ z e. X ) ) -> ( F ` ( y ( +g ` G ) z ) ) = ( ( F ` y ) ( +g ` H ) ( F ` z ) ) ) |
| 32 | 1 4 5 6 9 10 12 31 | isghmd | |- ( Y e. ( NrmSGrp ` G ) -> F e. ( G GrpHom H ) ) |