This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2idlval.i | |- I = ( LIdeal ` R ) |
|
| 2idlval.o | |- O = ( oppR ` R ) |
||
| 2idlval.j | |- J = ( LIdeal ` O ) |
||
| 2idlval.t | |- T = ( 2Ideal ` R ) |
||
| Assertion | 2idlval | |- T = ( I i^i J ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2idlval.i | |- I = ( LIdeal ` R ) |
|
| 2 | 2idlval.o | |- O = ( oppR ` R ) |
|
| 3 | 2idlval.j | |- J = ( LIdeal ` O ) |
|
| 4 | 2idlval.t | |- T = ( 2Ideal ` R ) |
|
| 5 | fveq2 | |- ( r = R -> ( LIdeal ` r ) = ( LIdeal ` R ) ) |
|
| 6 | 5 1 | eqtr4di | |- ( r = R -> ( LIdeal ` r ) = I ) |
| 7 | fveq2 | |- ( r = R -> ( oppR ` r ) = ( oppR ` R ) ) |
|
| 8 | 7 2 | eqtr4di | |- ( r = R -> ( oppR ` r ) = O ) |
| 9 | 8 | fveq2d | |- ( r = R -> ( LIdeal ` ( oppR ` r ) ) = ( LIdeal ` O ) ) |
| 10 | 9 3 | eqtr4di | |- ( r = R -> ( LIdeal ` ( oppR ` r ) ) = J ) |
| 11 | 6 10 | ineq12d | |- ( r = R -> ( ( LIdeal ` r ) i^i ( LIdeal ` ( oppR ` r ) ) ) = ( I i^i J ) ) |
| 12 | df-2idl | |- 2Ideal = ( r e. _V |-> ( ( LIdeal ` r ) i^i ( LIdeal ` ( oppR ` r ) ) ) ) |
|
| 13 | 1 | fvexi | |- I e. _V |
| 14 | 13 | inex1 | |- ( I i^i J ) e. _V |
| 15 | 11 12 14 | fvmpt | |- ( R e. _V -> ( 2Ideal ` R ) = ( I i^i J ) ) |
| 16 | fvprc | |- ( -. R e. _V -> ( 2Ideal ` R ) = (/) ) |
|
| 17 | inss1 | |- ( I i^i J ) C_ I |
|
| 18 | fvprc | |- ( -. R e. _V -> ( LIdeal ` R ) = (/) ) |
|
| 19 | 1 18 | eqtrid | |- ( -. R e. _V -> I = (/) ) |
| 20 | sseq0 | |- ( ( ( I i^i J ) C_ I /\ I = (/) ) -> ( I i^i J ) = (/) ) |
|
| 21 | 17 19 20 | sylancr | |- ( -. R e. _V -> ( I i^i J ) = (/) ) |
| 22 | 16 21 | eqtr4d | |- ( -. R e. _V -> ( 2Ideal ` R ) = ( I i^i J ) ) |
| 23 | 15 22 | pm2.61i | |- ( 2Ideal ` R ) = ( I i^i J ) |
| 24 | 4 23 | eqtri | |- T = ( I i^i J ) |