This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplicative identity of the quotient ring. (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusring.u | |- U = ( R /s ( R ~QG S ) ) |
|
| qusring.i | |- I = ( 2Ideal ` R ) |
||
| qus1.o | |- .1. = ( 1r ` R ) |
||
| Assertion | qus1 | |- ( ( R e. Ring /\ S e. I ) -> ( U e. Ring /\ [ .1. ] ( R ~QG S ) = ( 1r ` U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusring.u | |- U = ( R /s ( R ~QG S ) ) |
|
| 2 | qusring.i | |- I = ( 2Ideal ` R ) |
|
| 3 | qus1.o | |- .1. = ( 1r ` R ) |
|
| 4 | 1 | a1i | |- ( ( R e. Ring /\ S e. I ) -> U = ( R /s ( R ~QG S ) ) ) |
| 5 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 6 | 5 | a1i | |- ( ( R e. Ring /\ S e. I ) -> ( Base ` R ) = ( Base ` R ) ) |
| 7 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 8 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 9 | eqid | |- ( LIdeal ` R ) = ( LIdeal ` R ) |
|
| 10 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 11 | eqid | |- ( LIdeal ` ( oppR ` R ) ) = ( LIdeal ` ( oppR ` R ) ) |
|
| 12 | 9 10 11 2 | 2idlval | |- I = ( ( LIdeal ` R ) i^i ( LIdeal ` ( oppR ` R ) ) ) |
| 13 | 12 | elin2 | |- ( S e. I <-> ( S e. ( LIdeal ` R ) /\ S e. ( LIdeal ` ( oppR ` R ) ) ) ) |
| 14 | 13 | simplbi | |- ( S e. I -> S e. ( LIdeal ` R ) ) |
| 15 | 9 | lidlsubg | |- ( ( R e. Ring /\ S e. ( LIdeal ` R ) ) -> S e. ( SubGrp ` R ) ) |
| 16 | 14 15 | sylan2 | |- ( ( R e. Ring /\ S e. I ) -> S e. ( SubGrp ` R ) ) |
| 17 | eqid | |- ( R ~QG S ) = ( R ~QG S ) |
|
| 18 | 5 17 | eqger | |- ( S e. ( SubGrp ` R ) -> ( R ~QG S ) Er ( Base ` R ) ) |
| 19 | 16 18 | syl | |- ( ( R e. Ring /\ S e. I ) -> ( R ~QG S ) Er ( Base ` R ) ) |
| 20 | ringabl | |- ( R e. Ring -> R e. Abel ) |
|
| 21 | 20 | adantr | |- ( ( R e. Ring /\ S e. I ) -> R e. Abel ) |
| 22 | ablnsg | |- ( R e. Abel -> ( NrmSGrp ` R ) = ( SubGrp ` R ) ) |
|
| 23 | 21 22 | syl | |- ( ( R e. Ring /\ S e. I ) -> ( NrmSGrp ` R ) = ( SubGrp ` R ) ) |
| 24 | 16 23 | eleqtrrd | |- ( ( R e. Ring /\ S e. I ) -> S e. ( NrmSGrp ` R ) ) |
| 25 | 5 17 7 | eqgcpbl | |- ( S e. ( NrmSGrp ` R ) -> ( ( a ( R ~QG S ) c /\ b ( R ~QG S ) d ) -> ( a ( +g ` R ) b ) ( R ~QG S ) ( c ( +g ` R ) d ) ) ) |
| 26 | 24 25 | syl | |- ( ( R e. Ring /\ S e. I ) -> ( ( a ( R ~QG S ) c /\ b ( R ~QG S ) d ) -> ( a ( +g ` R ) b ) ( R ~QG S ) ( c ( +g ` R ) d ) ) ) |
| 27 | 5 17 2 8 | 2idlcpbl | |- ( ( R e. Ring /\ S e. I ) -> ( ( a ( R ~QG S ) c /\ b ( R ~QG S ) d ) -> ( a ( .r ` R ) b ) ( R ~QG S ) ( c ( .r ` R ) d ) ) ) |
| 28 | simpl | |- ( ( R e. Ring /\ S e. I ) -> R e. Ring ) |
|
| 29 | 4 6 7 8 3 19 26 27 28 | qusring2 | |- ( ( R e. Ring /\ S e. I ) -> ( U e. Ring /\ [ .1. ] ( R ~QG S ) = ( 1r ` U ) ) ) |