This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every subgroup of an abelian group is normal. (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ablnsg | |- ( G e. Abel -> ( NrmSGrp ` G ) = ( SubGrp ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 2 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 3 | 1 2 | ablcom | |- ( ( G e. Abel /\ y e. ( Base ` G ) /\ z e. ( Base ` G ) ) -> ( y ( +g ` G ) z ) = ( z ( +g ` G ) y ) ) |
| 4 | 3 | 3expb | |- ( ( G e. Abel /\ ( y e. ( Base ` G ) /\ z e. ( Base ` G ) ) ) -> ( y ( +g ` G ) z ) = ( z ( +g ` G ) y ) ) |
| 5 | 4 | eleq1d | |- ( ( G e. Abel /\ ( y e. ( Base ` G ) /\ z e. ( Base ` G ) ) ) -> ( ( y ( +g ` G ) z ) e. x <-> ( z ( +g ` G ) y ) e. x ) ) |
| 6 | 5 | ralrimivva | |- ( G e. Abel -> A. y e. ( Base ` G ) A. z e. ( Base ` G ) ( ( y ( +g ` G ) z ) e. x <-> ( z ( +g ` G ) y ) e. x ) ) |
| 7 | 1 2 | isnsg | |- ( x e. ( NrmSGrp ` G ) <-> ( x e. ( SubGrp ` G ) /\ A. y e. ( Base ` G ) A. z e. ( Base ` G ) ( ( y ( +g ` G ) z ) e. x <-> ( z ( +g ` G ) y ) e. x ) ) ) |
| 8 | 7 | rbaib | |- ( A. y e. ( Base ` G ) A. z e. ( Base ` G ) ( ( y ( +g ` G ) z ) e. x <-> ( z ( +g ` G ) y ) e. x ) -> ( x e. ( NrmSGrp ` G ) <-> x e. ( SubGrp ` G ) ) ) |
| 9 | 6 8 | syl | |- ( G e. Abel -> ( x e. ( NrmSGrp ` G ) <-> x e. ( SubGrp ` G ) ) ) |
| 10 | 9 | eqrdv | |- ( G e. Abel -> ( NrmSGrp ` G ) = ( SubGrp ` G ) ) |