This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Pointwise combination commutes with restriction. (Contributed by Stefan O'Rear, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | offres | |- ( ( F e. V /\ G e. W ) -> ( ( F oF R G ) |` D ) = ( ( F |` D ) oF R ( G |` D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinel2 | |- ( x e. ( ( dom F i^i dom G ) i^i D ) -> x e. D ) |
|
| 2 | fvres | |- ( x e. D -> ( ( F |` D ) ` x ) = ( F ` x ) ) |
|
| 3 | fvres | |- ( x e. D -> ( ( G |` D ) ` x ) = ( G ` x ) ) |
|
| 4 | 2 3 | oveq12d | |- ( x e. D -> ( ( ( F |` D ) ` x ) R ( ( G |` D ) ` x ) ) = ( ( F ` x ) R ( G ` x ) ) ) |
| 5 | 1 4 | syl | |- ( x e. ( ( dom F i^i dom G ) i^i D ) -> ( ( ( F |` D ) ` x ) R ( ( G |` D ) ` x ) ) = ( ( F ` x ) R ( G ` x ) ) ) |
| 6 | 5 | mpteq2ia | |- ( x e. ( ( dom F i^i dom G ) i^i D ) |-> ( ( ( F |` D ) ` x ) R ( ( G |` D ) ` x ) ) ) = ( x e. ( ( dom F i^i dom G ) i^i D ) |-> ( ( F ` x ) R ( G ` x ) ) ) |
| 7 | inindi | |- ( D i^i ( dom F i^i dom G ) ) = ( ( D i^i dom F ) i^i ( D i^i dom G ) ) |
|
| 8 | incom | |- ( ( dom F i^i dom G ) i^i D ) = ( D i^i ( dom F i^i dom G ) ) |
|
| 9 | dmres | |- dom ( F |` D ) = ( D i^i dom F ) |
|
| 10 | dmres | |- dom ( G |` D ) = ( D i^i dom G ) |
|
| 11 | 9 10 | ineq12i | |- ( dom ( F |` D ) i^i dom ( G |` D ) ) = ( ( D i^i dom F ) i^i ( D i^i dom G ) ) |
| 12 | 7 8 11 | 3eqtr4ri | |- ( dom ( F |` D ) i^i dom ( G |` D ) ) = ( ( dom F i^i dom G ) i^i D ) |
| 13 | 12 | mpteq1i | |- ( x e. ( dom ( F |` D ) i^i dom ( G |` D ) ) |-> ( ( ( F |` D ) ` x ) R ( ( G |` D ) ` x ) ) ) = ( x e. ( ( dom F i^i dom G ) i^i D ) |-> ( ( ( F |` D ) ` x ) R ( ( G |` D ) ` x ) ) ) |
| 14 | resmpt3 | |- ( ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) R ( G ` x ) ) ) |` D ) = ( x e. ( ( dom F i^i dom G ) i^i D ) |-> ( ( F ` x ) R ( G ` x ) ) ) |
|
| 15 | 6 13 14 | 3eqtr4ri | |- ( ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) R ( G ` x ) ) ) |` D ) = ( x e. ( dom ( F |` D ) i^i dom ( G |` D ) ) |-> ( ( ( F |` D ) ` x ) R ( ( G |` D ) ` x ) ) ) |
| 16 | offval3 | |- ( ( F e. V /\ G e. W ) -> ( F oF R G ) = ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) R ( G ` x ) ) ) ) |
|
| 17 | 16 | reseq1d | |- ( ( F e. V /\ G e. W ) -> ( ( F oF R G ) |` D ) = ( ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) R ( G ` x ) ) ) |` D ) ) |
| 18 | resexg | |- ( F e. V -> ( F |` D ) e. _V ) |
|
| 19 | resexg | |- ( G e. W -> ( G |` D ) e. _V ) |
|
| 20 | offval3 | |- ( ( ( F |` D ) e. _V /\ ( G |` D ) e. _V ) -> ( ( F |` D ) oF R ( G |` D ) ) = ( x e. ( dom ( F |` D ) i^i dom ( G |` D ) ) |-> ( ( ( F |` D ) ` x ) R ( ( G |` D ) ` x ) ) ) ) |
|
| 21 | 18 19 20 | syl2an | |- ( ( F e. V /\ G e. W ) -> ( ( F |` D ) oF R ( G |` D ) ) = ( x e. ( dom ( F |` D ) i^i dom ( G |` D ) ) |-> ( ( ( F |` D ) ` x ) R ( ( G |` D ) ` x ) ) ) ) |
| 22 | 15 17 21 | 3eqtr4a | |- ( ( F e. V /\ G e. W ) -> ( ( F oF R G ) |` D ) = ( ( F |` D ) oF R ( G |` D ) ) ) |