This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Splitting for structure powers, part 0: restriction is a function. (Contributed by Stefan O'Rear, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwssplit1.y | |- Y = ( W ^s U ) |
|
| pwssplit1.z | |- Z = ( W ^s V ) |
||
| pwssplit1.b | |- B = ( Base ` Y ) |
||
| pwssplit1.c | |- C = ( Base ` Z ) |
||
| pwssplit1.f | |- F = ( x e. B |-> ( x |` V ) ) |
||
| Assertion | pwssplit0 | |- ( ( W e. T /\ U e. X /\ V C_ U ) -> F : B --> C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwssplit1.y | |- Y = ( W ^s U ) |
|
| 2 | pwssplit1.z | |- Z = ( W ^s V ) |
|
| 3 | pwssplit1.b | |- B = ( Base ` Y ) |
|
| 4 | pwssplit1.c | |- C = ( Base ` Z ) |
|
| 5 | pwssplit1.f | |- F = ( x e. B |-> ( x |` V ) ) |
|
| 6 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 7 | 1 6 3 | pwselbasb | |- ( ( W e. T /\ U e. X ) -> ( x e. B <-> x : U --> ( Base ` W ) ) ) |
| 8 | 7 | 3adant3 | |- ( ( W e. T /\ U e. X /\ V C_ U ) -> ( x e. B <-> x : U --> ( Base ` W ) ) ) |
| 9 | 8 | biimpa | |- ( ( ( W e. T /\ U e. X /\ V C_ U ) /\ x e. B ) -> x : U --> ( Base ` W ) ) |
| 10 | simpl3 | |- ( ( ( W e. T /\ U e. X /\ V C_ U ) /\ x e. B ) -> V C_ U ) |
|
| 11 | 9 10 | fssresd | |- ( ( ( W e. T /\ U e. X /\ V C_ U ) /\ x e. B ) -> ( x |` V ) : V --> ( Base ` W ) ) |
| 12 | simp1 | |- ( ( W e. T /\ U e. X /\ V C_ U ) -> W e. T ) |
|
| 13 | simp2 | |- ( ( W e. T /\ U e. X /\ V C_ U ) -> U e. X ) |
|
| 14 | simp3 | |- ( ( W e. T /\ U e. X /\ V C_ U ) -> V C_ U ) |
|
| 15 | 13 14 | ssexd | |- ( ( W e. T /\ U e. X /\ V C_ U ) -> V e. _V ) |
| 16 | 2 6 4 | pwselbasb | |- ( ( W e. T /\ V e. _V ) -> ( ( x |` V ) e. C <-> ( x |` V ) : V --> ( Base ` W ) ) ) |
| 17 | 12 15 16 | syl2anc | |- ( ( W e. T /\ U e. X /\ V C_ U ) -> ( ( x |` V ) e. C <-> ( x |` V ) : V --> ( Base ` W ) ) ) |
| 18 | 17 | adantr | |- ( ( ( W e. T /\ U e. X /\ V C_ U ) /\ x e. B ) -> ( ( x |` V ) e. C <-> ( x |` V ) : V --> ( Base ` W ) ) ) |
| 19 | 11 18 | mpbird | |- ( ( ( W e. T /\ U e. X /\ V C_ U ) /\ x e. B ) -> ( x |` V ) e. C ) |
| 20 | 19 5 | fmptd | |- ( ( W e. T /\ U e. X /\ V C_ U ) -> F : B --> C ) |