This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring of scalars of a structure power. (Contributed by Stefan O'Rear, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwssca.y | |- Y = ( R ^s I ) |
|
| pwssca.s | |- S = ( Scalar ` R ) |
||
| Assertion | pwssca | |- ( ( R e. V /\ I e. W ) -> S = ( Scalar ` Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwssca.y | |- Y = ( R ^s I ) |
|
| 2 | pwssca.s | |- S = ( Scalar ` R ) |
|
| 3 | eqid | |- ( S Xs_ ( I X. { R } ) ) = ( S Xs_ ( I X. { R } ) ) |
|
| 4 | 2 | fvexi | |- S e. _V |
| 5 | 4 | a1i | |- ( ( R e. V /\ I e. W ) -> S e. _V ) |
| 6 | simpr | |- ( ( R e. V /\ I e. W ) -> I e. W ) |
|
| 7 | snex | |- { R } e. _V |
|
| 8 | xpexg | |- ( ( I e. W /\ { R } e. _V ) -> ( I X. { R } ) e. _V ) |
|
| 9 | 6 7 8 | sylancl | |- ( ( R e. V /\ I e. W ) -> ( I X. { R } ) e. _V ) |
| 10 | 3 5 9 | prdssca | |- ( ( R e. V /\ I e. W ) -> S = ( Scalar ` ( S Xs_ ( I X. { R } ) ) ) ) |
| 11 | 1 2 | pwsval | |- ( ( R e. V /\ I e. W ) -> Y = ( S Xs_ ( I X. { R } ) ) ) |
| 12 | 11 | fveq2d | |- ( ( R e. V /\ I e. W ) -> ( Scalar ` Y ) = ( Scalar ` ( S Xs_ ( I X. { R } ) ) ) ) |
| 13 | 10 12 | eqtr4d | |- ( ( R e. V /\ I e. W ) -> S = ( Scalar ` Y ) ) |