This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism of left modules is a bijective homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | islmim.b | |- B = ( Base ` R ) |
|
| islmim.c | |- C = ( Base ` S ) |
||
| Assertion | islmim | |- ( F e. ( R LMIso S ) <-> ( F e. ( R LMHom S ) /\ F : B -1-1-onto-> C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islmim.b | |- B = ( Base ` R ) |
|
| 2 | islmim.c | |- C = ( Base ` S ) |
|
| 3 | df-lmim | |- LMIso = ( a e. LMod , b e. LMod |-> { c e. ( a LMHom b ) | c : ( Base ` a ) -1-1-onto-> ( Base ` b ) } ) |
|
| 4 | ovex | |- ( a LMHom b ) e. _V |
|
| 5 | 4 | rabex | |- { c e. ( a LMHom b ) | c : ( Base ` a ) -1-1-onto-> ( Base ` b ) } e. _V |
| 6 | oveq12 | |- ( ( a = R /\ b = S ) -> ( a LMHom b ) = ( R LMHom S ) ) |
|
| 7 | fveq2 | |- ( a = R -> ( Base ` a ) = ( Base ` R ) ) |
|
| 8 | 7 1 | eqtr4di | |- ( a = R -> ( Base ` a ) = B ) |
| 9 | fveq2 | |- ( b = S -> ( Base ` b ) = ( Base ` S ) ) |
|
| 10 | 9 2 | eqtr4di | |- ( b = S -> ( Base ` b ) = C ) |
| 11 | f1oeq23 | |- ( ( ( Base ` a ) = B /\ ( Base ` b ) = C ) -> ( c : ( Base ` a ) -1-1-onto-> ( Base ` b ) <-> c : B -1-1-onto-> C ) ) |
|
| 12 | 8 10 11 | syl2an | |- ( ( a = R /\ b = S ) -> ( c : ( Base ` a ) -1-1-onto-> ( Base ` b ) <-> c : B -1-1-onto-> C ) ) |
| 13 | 6 12 | rabeqbidv | |- ( ( a = R /\ b = S ) -> { c e. ( a LMHom b ) | c : ( Base ` a ) -1-1-onto-> ( Base ` b ) } = { c e. ( R LMHom S ) | c : B -1-1-onto-> C } ) |
| 14 | 3 5 13 | elovmpo | |- ( F e. ( R LMIso S ) <-> ( R e. LMod /\ S e. LMod /\ F e. { c e. ( R LMHom S ) | c : B -1-1-onto-> C } ) ) |
| 15 | df-3an | |- ( ( R e. LMod /\ S e. LMod /\ F e. { c e. ( R LMHom S ) | c : B -1-1-onto-> C } ) <-> ( ( R e. LMod /\ S e. LMod ) /\ F e. { c e. ( R LMHom S ) | c : B -1-1-onto-> C } ) ) |
|
| 16 | f1oeq1 | |- ( c = F -> ( c : B -1-1-onto-> C <-> F : B -1-1-onto-> C ) ) |
|
| 17 | 16 | elrab | |- ( F e. { c e. ( R LMHom S ) | c : B -1-1-onto-> C } <-> ( F e. ( R LMHom S ) /\ F : B -1-1-onto-> C ) ) |
| 18 | 17 | anbi2i | |- ( ( ( R e. LMod /\ S e. LMod ) /\ F e. { c e. ( R LMHom S ) | c : B -1-1-onto-> C } ) <-> ( ( R e. LMod /\ S e. LMod ) /\ ( F e. ( R LMHom S ) /\ F : B -1-1-onto-> C ) ) ) |
| 19 | lmhmlmod1 | |- ( F e. ( R LMHom S ) -> R e. LMod ) |
|
| 20 | lmhmlmod2 | |- ( F e. ( R LMHom S ) -> S e. LMod ) |
|
| 21 | 19 20 | jca | |- ( F e. ( R LMHom S ) -> ( R e. LMod /\ S e. LMod ) ) |
| 22 | 21 | adantr | |- ( ( F e. ( R LMHom S ) /\ F : B -1-1-onto-> C ) -> ( R e. LMod /\ S e. LMod ) ) |
| 23 | 22 | pm4.71ri | |- ( ( F e. ( R LMHom S ) /\ F : B -1-1-onto-> C ) <-> ( ( R e. LMod /\ S e. LMod ) /\ ( F e. ( R LMHom S ) /\ F : B -1-1-onto-> C ) ) ) |
| 24 | 18 23 | bitr4i | |- ( ( ( R e. LMod /\ S e. LMod ) /\ F e. { c e. ( R LMHom S ) | c : B -1-1-onto-> C } ) <-> ( F e. ( R LMHom S ) /\ F : B -1-1-onto-> C ) ) |
| 25 | 14 15 24 | 3bitri | |- ( F e. ( R LMIso S ) <-> ( F e. ( R LMHom S ) /\ F : B -1-1-onto-> C ) ) |