This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication in a structure power is pointwise. (Contributed by Mario Carneiro, 11-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsvscaval.y | |- Y = ( R ^s I ) |
|
| pwsvscaval.b | |- B = ( Base ` Y ) |
||
| pwsvscaval.s | |- .x. = ( .s ` R ) |
||
| pwsvscaval.t | |- .xb = ( .s ` Y ) |
||
| pwsvscaval.f | |- F = ( Scalar ` R ) |
||
| pwsvscaval.k | |- K = ( Base ` F ) |
||
| pwsvscaval.r | |- ( ph -> R e. V ) |
||
| pwsvscaval.i | |- ( ph -> I e. W ) |
||
| pwsvscaval.a | |- ( ph -> A e. K ) |
||
| pwsvscaval.x | |- ( ph -> X e. B ) |
||
| Assertion | pwsvscafval | |- ( ph -> ( A .xb X ) = ( ( I X. { A } ) oF .x. X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsvscaval.y | |- Y = ( R ^s I ) |
|
| 2 | pwsvscaval.b | |- B = ( Base ` Y ) |
|
| 3 | pwsvscaval.s | |- .x. = ( .s ` R ) |
|
| 4 | pwsvscaval.t | |- .xb = ( .s ` Y ) |
|
| 5 | pwsvscaval.f | |- F = ( Scalar ` R ) |
|
| 6 | pwsvscaval.k | |- K = ( Base ` F ) |
|
| 7 | pwsvscaval.r | |- ( ph -> R e. V ) |
|
| 8 | pwsvscaval.i | |- ( ph -> I e. W ) |
|
| 9 | pwsvscaval.a | |- ( ph -> A e. K ) |
|
| 10 | pwsvscaval.x | |- ( ph -> X e. B ) |
|
| 11 | 1 5 | pwsval | |- ( ( R e. V /\ I e. W ) -> Y = ( F Xs_ ( I X. { R } ) ) ) |
| 12 | 7 8 11 | syl2anc | |- ( ph -> Y = ( F Xs_ ( I X. { R } ) ) ) |
| 13 | 12 | fveq2d | |- ( ph -> ( .s ` Y ) = ( .s ` ( F Xs_ ( I X. { R } ) ) ) ) |
| 14 | 4 13 | eqtrid | |- ( ph -> .xb = ( .s ` ( F Xs_ ( I X. { R } ) ) ) ) |
| 15 | 14 | oveqd | |- ( ph -> ( A .xb X ) = ( A ( .s ` ( F Xs_ ( I X. { R } ) ) ) X ) ) |
| 16 | eqid | |- ( F Xs_ ( I X. { R } ) ) = ( F Xs_ ( I X. { R } ) ) |
|
| 17 | eqid | |- ( Base ` ( F Xs_ ( I X. { R } ) ) ) = ( Base ` ( F Xs_ ( I X. { R } ) ) ) |
|
| 18 | eqid | |- ( .s ` ( F Xs_ ( I X. { R } ) ) ) = ( .s ` ( F Xs_ ( I X. { R } ) ) ) |
|
| 19 | 5 | fvexi | |- F e. _V |
| 20 | 19 | a1i | |- ( ph -> F e. _V ) |
| 21 | fnconstg | |- ( R e. V -> ( I X. { R } ) Fn I ) |
|
| 22 | 7 21 | syl | |- ( ph -> ( I X. { R } ) Fn I ) |
| 23 | 12 | fveq2d | |- ( ph -> ( Base ` Y ) = ( Base ` ( F Xs_ ( I X. { R } ) ) ) ) |
| 24 | 2 23 | eqtrid | |- ( ph -> B = ( Base ` ( F Xs_ ( I X. { R } ) ) ) ) |
| 25 | 10 24 | eleqtrd | |- ( ph -> X e. ( Base ` ( F Xs_ ( I X. { R } ) ) ) ) |
| 26 | 16 17 18 6 20 8 22 9 25 | prdsvscaval | |- ( ph -> ( A ( .s ` ( F Xs_ ( I X. { R } ) ) ) X ) = ( x e. I |-> ( A ( .s ` ( ( I X. { R } ) ` x ) ) ( X ` x ) ) ) ) |
| 27 | fvconst2g | |- ( ( R e. V /\ x e. I ) -> ( ( I X. { R } ) ` x ) = R ) |
|
| 28 | 7 27 | sylan | |- ( ( ph /\ x e. I ) -> ( ( I X. { R } ) ` x ) = R ) |
| 29 | 28 | fveq2d | |- ( ( ph /\ x e. I ) -> ( .s ` ( ( I X. { R } ) ` x ) ) = ( .s ` R ) ) |
| 30 | 29 3 | eqtr4di | |- ( ( ph /\ x e. I ) -> ( .s ` ( ( I X. { R } ) ` x ) ) = .x. ) |
| 31 | 30 | oveqd | |- ( ( ph /\ x e. I ) -> ( A ( .s ` ( ( I X. { R } ) ` x ) ) ( X ` x ) ) = ( A .x. ( X ` x ) ) ) |
| 32 | 31 | mpteq2dva | |- ( ph -> ( x e. I |-> ( A ( .s ` ( ( I X. { R } ) ` x ) ) ( X ` x ) ) ) = ( x e. I |-> ( A .x. ( X ` x ) ) ) ) |
| 33 | 9 | adantr | |- ( ( ph /\ x e. I ) -> A e. K ) |
| 34 | fvexd | |- ( ( ph /\ x e. I ) -> ( X ` x ) e. _V ) |
|
| 35 | fconstmpt | |- ( I X. { A } ) = ( x e. I |-> A ) |
|
| 36 | 35 | a1i | |- ( ph -> ( I X. { A } ) = ( x e. I |-> A ) ) |
| 37 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 38 | 1 37 2 7 8 10 | pwselbas | |- ( ph -> X : I --> ( Base ` R ) ) |
| 39 | 38 | feqmptd | |- ( ph -> X = ( x e. I |-> ( X ` x ) ) ) |
| 40 | 8 33 34 36 39 | offval2 | |- ( ph -> ( ( I X. { A } ) oF .x. X ) = ( x e. I |-> ( A .x. ( X ` x ) ) ) ) |
| 41 | 32 40 | eqtr4d | |- ( ph -> ( x e. I |-> ( A ( .s ` ( ( I X. { R } ) ` x ) ) ( X ` x ) ) ) = ( ( I X. { A } ) oF .x. X ) ) |
| 42 | 15 26 41 | 3eqtrd | |- ( ph -> ( A .xb X ) = ( ( I X. { A } ) oF .x. X ) ) |