This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction for a module homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | islmhmd.x | |- X = ( Base ` S ) |
|
| islmhmd.a | |- .x. = ( .s ` S ) |
||
| islmhmd.b | |- .X. = ( .s ` T ) |
||
| islmhmd.k | |- K = ( Scalar ` S ) |
||
| islmhmd.j | |- J = ( Scalar ` T ) |
||
| islmhmd.n | |- N = ( Base ` K ) |
||
| islmhmd.s | |- ( ph -> S e. LMod ) |
||
| islmhmd.t | |- ( ph -> T e. LMod ) |
||
| islmhmd.c | |- ( ph -> J = K ) |
||
| islmhmd.f | |- ( ph -> F e. ( S GrpHom T ) ) |
||
| islmhmd.l | |- ( ( ph /\ ( x e. N /\ y e. X ) ) -> ( F ` ( x .x. y ) ) = ( x .X. ( F ` y ) ) ) |
||
| Assertion | islmhmd | |- ( ph -> F e. ( S LMHom T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islmhmd.x | |- X = ( Base ` S ) |
|
| 2 | islmhmd.a | |- .x. = ( .s ` S ) |
|
| 3 | islmhmd.b | |- .X. = ( .s ` T ) |
|
| 4 | islmhmd.k | |- K = ( Scalar ` S ) |
|
| 5 | islmhmd.j | |- J = ( Scalar ` T ) |
|
| 6 | islmhmd.n | |- N = ( Base ` K ) |
|
| 7 | islmhmd.s | |- ( ph -> S e. LMod ) |
|
| 8 | islmhmd.t | |- ( ph -> T e. LMod ) |
|
| 9 | islmhmd.c | |- ( ph -> J = K ) |
|
| 10 | islmhmd.f | |- ( ph -> F e. ( S GrpHom T ) ) |
|
| 11 | islmhmd.l | |- ( ( ph /\ ( x e. N /\ y e. X ) ) -> ( F ` ( x .x. y ) ) = ( x .X. ( F ` y ) ) ) |
|
| 12 | 11 | ralrimivva | |- ( ph -> A. x e. N A. y e. X ( F ` ( x .x. y ) ) = ( x .X. ( F ` y ) ) ) |
| 13 | 10 9 12 | 3jca | |- ( ph -> ( F e. ( S GrpHom T ) /\ J = K /\ A. x e. N A. y e. X ( F ` ( x .x. y ) ) = ( x .X. ( F ` y ) ) ) ) |
| 14 | 4 5 6 1 2 3 | islmhm | |- ( F e. ( S LMHom T ) <-> ( ( S e. LMod /\ T e. LMod ) /\ ( F e. ( S GrpHom T ) /\ J = K /\ A. x e. N A. y e. X ( F ` ( x .x. y ) ) = ( x .X. ( F ` y ) ) ) ) ) |
| 15 | 7 8 13 14 | syl21anbrc | |- ( ph -> F e. ( S LMHom T ) ) |