This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A structure power of a left module is a left module. (Contributed by Mario Carneiro, 11-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pwslmod.y | |- Y = ( R ^s I ) |
|
| Assertion | pwslmod | |- ( ( R e. LMod /\ I e. V ) -> Y e. LMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwslmod.y | |- Y = ( R ^s I ) |
|
| 2 | eqid | |- ( Scalar ` R ) = ( Scalar ` R ) |
|
| 3 | 1 2 | pwsval | |- ( ( R e. LMod /\ I e. V ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
| 4 | eqid | |- ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) |
|
| 5 | 2 | lmodring | |- ( R e. LMod -> ( Scalar ` R ) e. Ring ) |
| 6 | 5 | adantr | |- ( ( R e. LMod /\ I e. V ) -> ( Scalar ` R ) e. Ring ) |
| 7 | simpr | |- ( ( R e. LMod /\ I e. V ) -> I e. V ) |
|
| 8 | fconst6g | |- ( R e. LMod -> ( I X. { R } ) : I --> LMod ) |
|
| 9 | 8 | adantr | |- ( ( R e. LMod /\ I e. V ) -> ( I X. { R } ) : I --> LMod ) |
| 10 | fvconst2g | |- ( ( R e. LMod /\ x e. I ) -> ( ( I X. { R } ) ` x ) = R ) |
|
| 11 | 10 | adantlr | |- ( ( ( R e. LMod /\ I e. V ) /\ x e. I ) -> ( ( I X. { R } ) ` x ) = R ) |
| 12 | 11 | fveq2d | |- ( ( ( R e. LMod /\ I e. V ) /\ x e. I ) -> ( Scalar ` ( ( I X. { R } ) ` x ) ) = ( Scalar ` R ) ) |
| 13 | 4 6 7 9 12 | prdslmodd | |- ( ( R e. LMod /\ I e. V ) -> ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) e. LMod ) |
| 14 | 3 13 | eqeltrd | |- ( ( R e. LMod /\ I e. V ) -> Y e. LMod ) |