This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The n-th power of a number increased by 1 expressed by a product with a finite sum. (Contributed by AV, 15-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwp1fsum.a | |- ( ph -> A e. CC ) |
|
| pwp1fsum.n | |- ( ph -> N e. NN ) |
||
| Assertion | pwp1fsum | |- ( ph -> ( ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) + 1 ) = ( ( A + 1 ) x. sum_ k e. ( 0 ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwp1fsum.a | |- ( ph -> A e. CC ) |
|
| 2 | pwp1fsum.n | |- ( ph -> N e. NN ) |
|
| 3 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 4 | fzfid | |- ( ph -> ( 0 ... ( N - 1 ) ) e. Fin ) |
|
| 5 | neg1cn | |- -u 1 e. CC |
|
| 6 | 5 | a1i | |- ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> -u 1 e. CC ) |
| 7 | elfznn0 | |- ( k e. ( 0 ... ( N - 1 ) ) -> k e. NN0 ) |
|
| 8 | 7 | adantl | |- ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> k e. NN0 ) |
| 9 | 6 8 | expcld | |- ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( -u 1 ^ k ) e. CC ) |
| 10 | 1 | adantr | |- ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> A e. CC ) |
| 11 | 10 8 | expcld | |- ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( A ^ k ) e. CC ) |
| 12 | 9 11 | mulcld | |- ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( -u 1 ^ k ) x. ( A ^ k ) ) e. CC ) |
| 13 | 4 12 | fsumcl | |- ( ph -> sum_ k e. ( 0 ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) e. CC ) |
| 14 | 1 3 13 | adddird | |- ( ph -> ( ( A + 1 ) x. sum_ k e. ( 0 ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) = ( ( A x. sum_ k e. ( 0 ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) + ( 1 x. sum_ k e. ( 0 ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) ) ) |
| 15 | 4 1 12 | fsummulc2 | |- ( ph -> ( A x. sum_ k e. ( 0 ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( A x. ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) ) |
| 16 | 10 12 | mulcomd | |- ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( A x. ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) = ( ( ( -u 1 ^ k ) x. ( A ^ k ) ) x. A ) ) |
| 17 | 9 11 10 | mulassd | |- ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( -u 1 ^ k ) x. ( A ^ k ) ) x. A ) = ( ( -u 1 ^ k ) x. ( ( A ^ k ) x. A ) ) ) |
| 18 | expp1 | |- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) |
|
| 19 | 1 7 18 | syl2an | |- ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) |
| 20 | 19 | eqcomd | |- ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( A ^ k ) x. A ) = ( A ^ ( k + 1 ) ) ) |
| 21 | 20 | oveq2d | |- ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( -u 1 ^ k ) x. ( ( A ^ k ) x. A ) ) = ( ( -u 1 ^ k ) x. ( A ^ ( k + 1 ) ) ) ) |
| 22 | 16 17 21 | 3eqtrd | |- ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( A x. ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) = ( ( -u 1 ^ k ) x. ( A ^ ( k + 1 ) ) ) ) |
| 23 | 22 | sumeq2dv | |- ( ph -> sum_ k e. ( 0 ... ( N - 1 ) ) ( A x. ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ ( k + 1 ) ) ) ) |
| 24 | 15 23 | eqtrd | |- ( ph -> ( A x. sum_ k e. ( 0 ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ ( k + 1 ) ) ) ) |
| 25 | 13 | mullidd | |- ( ph -> ( 1 x. sum_ k e. ( 0 ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) |
| 26 | 24 25 | oveq12d | |- ( ph -> ( ( A x. sum_ k e. ( 0 ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) + ( 1 x. sum_ k e. ( 0 ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) ) = ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ ( k + 1 ) ) ) + sum_ k e. ( 0 ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) ) |
| 27 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 28 | 0zd | |- ( ph -> 0 e. ZZ ) |
|
| 29 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 30 | peano2zm | |- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
|
| 31 | 29 30 | syl | |- ( N e. NN -> ( N - 1 ) e. ZZ ) |
| 32 | 2 31 | syl | |- ( ph -> ( N - 1 ) e. ZZ ) |
| 33 | peano2nn0 | |- ( k e. NN0 -> ( k + 1 ) e. NN0 ) |
|
| 34 | 7 33 | syl | |- ( k e. ( 0 ... ( N - 1 ) ) -> ( k + 1 ) e. NN0 ) |
| 35 | 34 | adantl | |- ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( k + 1 ) e. NN0 ) |
| 36 | 10 35 | expcld | |- ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( A ^ ( k + 1 ) ) e. CC ) |
| 37 | 9 36 | mulcld | |- ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( -u 1 ^ k ) x. ( A ^ ( k + 1 ) ) ) e. CC ) |
| 38 | oveq2 | |- ( k = ( l - 1 ) -> ( -u 1 ^ k ) = ( -u 1 ^ ( l - 1 ) ) ) |
|
| 39 | oveq1 | |- ( k = ( l - 1 ) -> ( k + 1 ) = ( ( l - 1 ) + 1 ) ) |
|
| 40 | 39 | oveq2d | |- ( k = ( l - 1 ) -> ( A ^ ( k + 1 ) ) = ( A ^ ( ( l - 1 ) + 1 ) ) ) |
| 41 | 38 40 | oveq12d | |- ( k = ( l - 1 ) -> ( ( -u 1 ^ k ) x. ( A ^ ( k + 1 ) ) ) = ( ( -u 1 ^ ( l - 1 ) ) x. ( A ^ ( ( l - 1 ) + 1 ) ) ) ) |
| 42 | 27 28 32 37 41 | fsumshft | |- ( ph -> sum_ k e. ( 0 ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ ( k + 1 ) ) ) = sum_ l e. ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) ( ( -u 1 ^ ( l - 1 ) ) x. ( A ^ ( ( l - 1 ) + 1 ) ) ) ) |
| 43 | elfzelz | |- ( l e. ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) -> l e. ZZ ) |
|
| 44 | 43 | zcnd | |- ( l e. ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) -> l e. CC ) |
| 45 | 44 | adantl | |- ( ( ph /\ l e. ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) -> l e. CC ) |
| 46 | npcan1 | |- ( l e. CC -> ( ( l - 1 ) + 1 ) = l ) |
|
| 47 | 45 46 | syl | |- ( ( ph /\ l e. ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) -> ( ( l - 1 ) + 1 ) = l ) |
| 48 | 47 | oveq2d | |- ( ( ph /\ l e. ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) -> ( A ^ ( ( l - 1 ) + 1 ) ) = ( A ^ l ) ) |
| 49 | 48 | oveq2d | |- ( ( ph /\ l e. ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) -> ( ( -u 1 ^ ( l - 1 ) ) x. ( A ^ ( ( l - 1 ) + 1 ) ) ) = ( ( -u 1 ^ ( l - 1 ) ) x. ( A ^ l ) ) ) |
| 50 | 49 | sumeq2dv | |- ( ph -> sum_ l e. ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) ( ( -u 1 ^ ( l - 1 ) ) x. ( A ^ ( ( l - 1 ) + 1 ) ) ) = sum_ l e. ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) ( ( -u 1 ^ ( l - 1 ) ) x. ( A ^ l ) ) ) |
| 51 | 2 | nncnd | |- ( ph -> N e. CC ) |
| 52 | npcan1 | |- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
|
| 53 | 51 52 | syl | |- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
| 54 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 55 | 54 | fveq2i | |- ( ZZ>= ` ( 0 + 1 ) ) = ( ZZ>= ` 1 ) |
| 56 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 57 | 55 56 | eqtr4i | |- ( ZZ>= ` ( 0 + 1 ) ) = NN |
| 58 | 57 | a1i | |- ( ph -> ( ZZ>= ` ( 0 + 1 ) ) = NN ) |
| 59 | 2 53 58 | 3eltr4d | |- ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( 0 + 1 ) ) ) |
| 60 | 54 | oveq1i | |- ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) = ( 1 ... ( ( N - 1 ) + 1 ) ) |
| 61 | 60 | eleq2i | |- ( l e. ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) <-> l e. ( 1 ... ( ( N - 1 ) + 1 ) ) ) |
| 62 | 5 | a1i | |- ( ( ph /\ l e. NN ) -> -u 1 e. CC ) |
| 63 | nnm1nn0 | |- ( l e. NN -> ( l - 1 ) e. NN0 ) |
|
| 64 | 63 | adantl | |- ( ( ph /\ l e. NN ) -> ( l - 1 ) e. NN0 ) |
| 65 | 62 64 | expcld | |- ( ( ph /\ l e. NN ) -> ( -u 1 ^ ( l - 1 ) ) e. CC ) |
| 66 | 1 | adantr | |- ( ( ph /\ l e. NN ) -> A e. CC ) |
| 67 | nnnn0 | |- ( l e. NN -> l e. NN0 ) |
|
| 68 | 67 | adantl | |- ( ( ph /\ l e. NN ) -> l e. NN0 ) |
| 69 | 66 68 | expcld | |- ( ( ph /\ l e. NN ) -> ( A ^ l ) e. CC ) |
| 70 | 65 69 | mulcld | |- ( ( ph /\ l e. NN ) -> ( ( -u 1 ^ ( l - 1 ) ) x. ( A ^ l ) ) e. CC ) |
| 71 | 70 | expcom | |- ( l e. NN -> ( ph -> ( ( -u 1 ^ ( l - 1 ) ) x. ( A ^ l ) ) e. CC ) ) |
| 72 | elfznn | |- ( l e. ( 1 ... ( ( N - 1 ) + 1 ) ) -> l e. NN ) |
|
| 73 | 71 72 | syl11 | |- ( ph -> ( l e. ( 1 ... ( ( N - 1 ) + 1 ) ) -> ( ( -u 1 ^ ( l - 1 ) ) x. ( A ^ l ) ) e. CC ) ) |
| 74 | 61 73 | biimtrid | |- ( ph -> ( l e. ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) -> ( ( -u 1 ^ ( l - 1 ) ) x. ( A ^ l ) ) e. CC ) ) |
| 75 | 74 | imp | |- ( ( ph /\ l e. ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) -> ( ( -u 1 ^ ( l - 1 ) ) x. ( A ^ l ) ) e. CC ) |
| 76 | oveq1 | |- ( l = ( ( N - 1 ) + 1 ) -> ( l - 1 ) = ( ( ( N - 1 ) + 1 ) - 1 ) ) |
|
| 77 | 76 | oveq2d | |- ( l = ( ( N - 1 ) + 1 ) -> ( -u 1 ^ ( l - 1 ) ) = ( -u 1 ^ ( ( ( N - 1 ) + 1 ) - 1 ) ) ) |
| 78 | oveq2 | |- ( l = ( ( N - 1 ) + 1 ) -> ( A ^ l ) = ( A ^ ( ( N - 1 ) + 1 ) ) ) |
|
| 79 | 77 78 | oveq12d | |- ( l = ( ( N - 1 ) + 1 ) -> ( ( -u 1 ^ ( l - 1 ) ) x. ( A ^ l ) ) = ( ( -u 1 ^ ( ( ( N - 1 ) + 1 ) - 1 ) ) x. ( A ^ ( ( N - 1 ) + 1 ) ) ) ) |
| 80 | 59 75 79 | fsumm1 | |- ( ph -> sum_ l e. ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) ( ( -u 1 ^ ( l - 1 ) ) x. ( A ^ l ) ) = ( sum_ l e. ( ( 0 + 1 ) ... ( ( ( N - 1 ) + 1 ) - 1 ) ) ( ( -u 1 ^ ( l - 1 ) ) x. ( A ^ l ) ) + ( ( -u 1 ^ ( ( ( N - 1 ) + 1 ) - 1 ) ) x. ( A ^ ( ( N - 1 ) + 1 ) ) ) ) ) |
| 81 | 32 | zcnd | |- ( ph -> ( N - 1 ) e. CC ) |
| 82 | pncan1 | |- ( ( N - 1 ) e. CC -> ( ( ( N - 1 ) + 1 ) - 1 ) = ( N - 1 ) ) |
|
| 83 | 81 82 | syl | |- ( ph -> ( ( ( N - 1 ) + 1 ) - 1 ) = ( N - 1 ) ) |
| 84 | 83 | oveq2d | |- ( ph -> ( ( 0 + 1 ) ... ( ( ( N - 1 ) + 1 ) - 1 ) ) = ( ( 0 + 1 ) ... ( N - 1 ) ) ) |
| 85 | 84 | sumeq1d | |- ( ph -> sum_ l e. ( ( 0 + 1 ) ... ( ( ( N - 1 ) + 1 ) - 1 ) ) ( ( -u 1 ^ ( l - 1 ) ) x. ( A ^ l ) ) = sum_ l e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ ( l - 1 ) ) x. ( A ^ l ) ) ) |
| 86 | oveq1 | |- ( l = k -> ( l - 1 ) = ( k - 1 ) ) |
|
| 87 | 86 | oveq2d | |- ( l = k -> ( -u 1 ^ ( l - 1 ) ) = ( -u 1 ^ ( k - 1 ) ) ) |
| 88 | oveq2 | |- ( l = k -> ( A ^ l ) = ( A ^ k ) ) |
|
| 89 | 87 88 | oveq12d | |- ( l = k -> ( ( -u 1 ^ ( l - 1 ) ) x. ( A ^ l ) ) = ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) ) |
| 90 | 89 | cbvsumv | |- sum_ l e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ ( l - 1 ) ) x. ( A ^ l ) ) = sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) |
| 91 | 85 90 | eqtrdi | |- ( ph -> sum_ l e. ( ( 0 + 1 ) ... ( ( ( N - 1 ) + 1 ) - 1 ) ) ( ( -u 1 ^ ( l - 1 ) ) x. ( A ^ l ) ) = sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) ) |
| 92 | 83 | oveq2d | |- ( ph -> ( -u 1 ^ ( ( ( N - 1 ) + 1 ) - 1 ) ) = ( -u 1 ^ ( N - 1 ) ) ) |
| 93 | 53 | oveq2d | |- ( ph -> ( A ^ ( ( N - 1 ) + 1 ) ) = ( A ^ N ) ) |
| 94 | 92 93 | oveq12d | |- ( ph -> ( ( -u 1 ^ ( ( ( N - 1 ) + 1 ) - 1 ) ) x. ( A ^ ( ( N - 1 ) + 1 ) ) ) = ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) ) |
| 95 | 91 94 | oveq12d | |- ( ph -> ( sum_ l e. ( ( 0 + 1 ) ... ( ( ( N - 1 ) + 1 ) - 1 ) ) ( ( -u 1 ^ ( l - 1 ) ) x. ( A ^ l ) ) + ( ( -u 1 ^ ( ( ( N - 1 ) + 1 ) - 1 ) ) x. ( A ^ ( ( N - 1 ) + 1 ) ) ) ) = ( sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) + ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) ) ) |
| 96 | 80 95 | eqtrd | |- ( ph -> sum_ l e. ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) ( ( -u 1 ^ ( l - 1 ) ) x. ( A ^ l ) ) = ( sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) + ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) ) ) |
| 97 | 42 50 96 | 3eqtrd | |- ( ph -> sum_ k e. ( 0 ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ ( k + 1 ) ) ) = ( sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) + ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) ) ) |
| 98 | nnm1nn0 | |- ( N e. NN -> ( N - 1 ) e. NN0 ) |
|
| 99 | elnn0uz | |- ( ( N - 1 ) e. NN0 <-> ( N - 1 ) e. ( ZZ>= ` 0 ) ) |
|
| 100 | 98 99 | sylib | |- ( N e. NN -> ( N - 1 ) e. ( ZZ>= ` 0 ) ) |
| 101 | 2 100 | syl | |- ( ph -> ( N - 1 ) e. ( ZZ>= ` 0 ) ) |
| 102 | oveq2 | |- ( k = 0 -> ( -u 1 ^ k ) = ( -u 1 ^ 0 ) ) |
|
| 103 | exp0 | |- ( -u 1 e. CC -> ( -u 1 ^ 0 ) = 1 ) |
|
| 104 | 5 103 | ax-mp | |- ( -u 1 ^ 0 ) = 1 |
| 105 | 102 104 | eqtrdi | |- ( k = 0 -> ( -u 1 ^ k ) = 1 ) |
| 106 | oveq2 | |- ( k = 0 -> ( A ^ k ) = ( A ^ 0 ) ) |
|
| 107 | 105 106 | oveq12d | |- ( k = 0 -> ( ( -u 1 ^ k ) x. ( A ^ k ) ) = ( 1 x. ( A ^ 0 ) ) ) |
| 108 | 101 12 107 | fsum1p | |- ( ph -> sum_ k e. ( 0 ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) = ( ( 1 x. ( A ^ 0 ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) ) |
| 109 | 1 | exp0d | |- ( ph -> ( A ^ 0 ) = 1 ) |
| 110 | 109 | oveq2d | |- ( ph -> ( 1 x. ( A ^ 0 ) ) = ( 1 x. 1 ) ) |
| 111 | 1t1e1 | |- ( 1 x. 1 ) = 1 |
|
| 112 | 110 111 | eqtrdi | |- ( ph -> ( 1 x. ( A ^ 0 ) ) = 1 ) |
| 113 | 112 | oveq1d | |- ( ph -> ( ( 1 x. ( A ^ 0 ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) = ( 1 + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) ) |
| 114 | fzfid | |- ( ph -> ( ( 0 + 1 ) ... ( N - 1 ) ) e. Fin ) |
|
| 115 | elfznn | |- ( k e. ( 1 ... ( N - 1 ) ) -> k e. NN ) |
|
| 116 | 5 | a1i | |- ( ( ph /\ k e. NN ) -> -u 1 e. CC ) |
| 117 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
| 118 | 117 | adantl | |- ( ( ph /\ k e. NN ) -> k e. NN0 ) |
| 119 | 116 118 | expcld | |- ( ( ph /\ k e. NN ) -> ( -u 1 ^ k ) e. CC ) |
| 120 | 1 | adantr | |- ( ( ph /\ k e. NN ) -> A e. CC ) |
| 121 | 120 118 | expcld | |- ( ( ph /\ k e. NN ) -> ( A ^ k ) e. CC ) |
| 122 | 119 121 | mulcld | |- ( ( ph /\ k e. NN ) -> ( ( -u 1 ^ k ) x. ( A ^ k ) ) e. CC ) |
| 123 | 122 | expcom | |- ( k e. NN -> ( ph -> ( ( -u 1 ^ k ) x. ( A ^ k ) ) e. CC ) ) |
| 124 | 115 123 | syl | |- ( k e. ( 1 ... ( N - 1 ) ) -> ( ph -> ( ( -u 1 ^ k ) x. ( A ^ k ) ) e. CC ) ) |
| 125 | 54 | oveq1i | |- ( ( 0 + 1 ) ... ( N - 1 ) ) = ( 1 ... ( N - 1 ) ) |
| 126 | 124 125 | eleq2s | |- ( k e. ( ( 0 + 1 ) ... ( N - 1 ) ) -> ( ph -> ( ( -u 1 ^ k ) x. ( A ^ k ) ) e. CC ) ) |
| 127 | 126 | impcom | |- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ) -> ( ( -u 1 ^ k ) x. ( A ^ k ) ) e. CC ) |
| 128 | 114 127 | fsumcl | |- ( ph -> sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) e. CC ) |
| 129 | 3 128 | addcomd | |- ( ph -> ( 1 + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) = ( sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) + 1 ) ) |
| 130 | 108 113 129 | 3eqtrd | |- ( ph -> sum_ k e. ( 0 ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) = ( sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) + 1 ) ) |
| 131 | 97 130 | oveq12d | |- ( ph -> ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ ( k + 1 ) ) ) + sum_ k e. ( 0 ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) = ( ( sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) + ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) ) + ( sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) + 1 ) ) ) |
| 132 | nnm1nn0 | |- ( k e. NN -> ( k - 1 ) e. NN0 ) |
|
| 133 | 132 | adantl | |- ( ( ph /\ k e. NN ) -> ( k - 1 ) e. NN0 ) |
| 134 | 116 133 | expcld | |- ( ( ph /\ k e. NN ) -> ( -u 1 ^ ( k - 1 ) ) e. CC ) |
| 135 | 134 121 | mulcld | |- ( ( ph /\ k e. NN ) -> ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) e. CC ) |
| 136 | 135 | expcom | |- ( k e. NN -> ( ph -> ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) e. CC ) ) |
| 137 | 115 136 | syl | |- ( k e. ( 1 ... ( N - 1 ) ) -> ( ph -> ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) e. CC ) ) |
| 138 | 137 125 | eleq2s | |- ( k e. ( ( 0 + 1 ) ... ( N - 1 ) ) -> ( ph -> ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) e. CC ) ) |
| 139 | 138 | impcom | |- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ) -> ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) e. CC ) |
| 140 | 114 139 | fsumcl | |- ( ph -> sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) e. CC ) |
| 141 | 5 | a1i | |- ( ph -> -u 1 e. CC ) |
| 142 | 2 98 | syl | |- ( ph -> ( N - 1 ) e. NN0 ) |
| 143 | 141 142 | expcld | |- ( ph -> ( -u 1 ^ ( N - 1 ) ) e. CC ) |
| 144 | 2 | nnnn0d | |- ( ph -> N e. NN0 ) |
| 145 | 1 144 | expcld | |- ( ph -> ( A ^ N ) e. CC ) |
| 146 | 143 145 | mulcld | |- ( ph -> ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) e. CC ) |
| 147 | 140 146 | addcld | |- ( ph -> ( sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) + ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) ) e. CC ) |
| 148 | 147 128 3 | addassd | |- ( ph -> ( ( ( sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) + ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) + 1 ) = ( ( sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) + ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) ) + ( sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) + 1 ) ) ) |
| 149 | 140 146 | addcomd | |- ( ph -> ( sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) + ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) ) = ( ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) ) ) |
| 150 | 149 | oveq1d | |- ( ph -> ( ( sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) + ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) = ( ( ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) ) |
| 151 | 146 140 128 | addassd | |- ( ph -> ( ( ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) = ( ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) + ( sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) ) ) |
| 152 | nncn | |- ( k e. NN -> k e. CC ) |
|
| 153 | npcan1 | |- ( k e. CC -> ( ( k - 1 ) + 1 ) = k ) |
|
| 154 | 152 153 | syl | |- ( k e. NN -> ( ( k - 1 ) + 1 ) = k ) |
| 155 | 154 | eqcomd | |- ( k e. NN -> k = ( ( k - 1 ) + 1 ) ) |
| 156 | 155 | oveq2d | |- ( k e. NN -> ( -u 1 ^ k ) = ( -u 1 ^ ( ( k - 1 ) + 1 ) ) ) |
| 157 | 5 | a1i | |- ( k e. NN -> -u 1 e. CC ) |
| 158 | 157 132 | expp1d | |- ( k e. NN -> ( -u 1 ^ ( ( k - 1 ) + 1 ) ) = ( ( -u 1 ^ ( k - 1 ) ) x. -u 1 ) ) |
| 159 | 157 132 | expcld | |- ( k e. NN -> ( -u 1 ^ ( k - 1 ) ) e. CC ) |
| 160 | 159 157 | mulcomd | |- ( k e. NN -> ( ( -u 1 ^ ( k - 1 ) ) x. -u 1 ) = ( -u 1 x. ( -u 1 ^ ( k - 1 ) ) ) ) |
| 161 | 156 158 160 | 3eqtrd | |- ( k e. NN -> ( -u 1 ^ k ) = ( -u 1 x. ( -u 1 ^ ( k - 1 ) ) ) ) |
| 162 | 161 | oveq2d | |- ( k e. NN -> ( ( -u 1 ^ ( k - 1 ) ) + ( -u 1 ^ k ) ) = ( ( -u 1 ^ ( k - 1 ) ) + ( -u 1 x. ( -u 1 ^ ( k - 1 ) ) ) ) ) |
| 163 | 159 | mulm1d | |- ( k e. NN -> ( -u 1 x. ( -u 1 ^ ( k - 1 ) ) ) = -u ( -u 1 ^ ( k - 1 ) ) ) |
| 164 | 163 | oveq2d | |- ( k e. NN -> ( ( -u 1 ^ ( k - 1 ) ) + ( -u 1 x. ( -u 1 ^ ( k - 1 ) ) ) ) = ( ( -u 1 ^ ( k - 1 ) ) + -u ( -u 1 ^ ( k - 1 ) ) ) ) |
| 165 | 159 | negidd | |- ( k e. NN -> ( ( -u 1 ^ ( k - 1 ) ) + -u ( -u 1 ^ ( k - 1 ) ) ) = 0 ) |
| 166 | 162 164 165 | 3eqtrd | |- ( k e. NN -> ( ( -u 1 ^ ( k - 1 ) ) + ( -u 1 ^ k ) ) = 0 ) |
| 167 | 166 | adantl | |- ( ( ph /\ k e. NN ) -> ( ( -u 1 ^ ( k - 1 ) ) + ( -u 1 ^ k ) ) = 0 ) |
| 168 | 167 | oveq1d | |- ( ( ph /\ k e. NN ) -> ( ( ( -u 1 ^ ( k - 1 ) ) + ( -u 1 ^ k ) ) x. ( A ^ k ) ) = ( 0 x. ( A ^ k ) ) ) |
| 169 | 134 119 121 | adddird | |- ( ( ph /\ k e. NN ) -> ( ( ( -u 1 ^ ( k - 1 ) ) + ( -u 1 ^ k ) ) x. ( A ^ k ) ) = ( ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) + ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) ) |
| 170 | 121 | mul02d | |- ( ( ph /\ k e. NN ) -> ( 0 x. ( A ^ k ) ) = 0 ) |
| 171 | 168 169 170 | 3eqtr3d | |- ( ( ph /\ k e. NN ) -> ( ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) + ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) = 0 ) |
| 172 | 171 | expcom | |- ( k e. NN -> ( ph -> ( ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) + ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) = 0 ) ) |
| 173 | 115 172 | syl | |- ( k e. ( 1 ... ( N - 1 ) ) -> ( ph -> ( ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) + ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) = 0 ) ) |
| 174 | 173 125 | eleq2s | |- ( k e. ( ( 0 + 1 ) ... ( N - 1 ) ) -> ( ph -> ( ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) + ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) = 0 ) ) |
| 175 | 174 | impcom | |- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ) -> ( ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) + ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) = 0 ) |
| 176 | 175 | sumeq2dv | |- ( ph -> sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) + ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) = sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) 0 ) |
| 177 | 114 139 127 | fsumadd | |- ( ph -> sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) + ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) = ( sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) ) |
| 178 | 114 | olcd | |- ( ph -> ( ( ( 0 + 1 ) ... ( N - 1 ) ) C_ ( ZZ>= ` 1 ) \/ ( ( 0 + 1 ) ... ( N - 1 ) ) e. Fin ) ) |
| 179 | sumz | |- ( ( ( ( 0 + 1 ) ... ( N - 1 ) ) C_ ( ZZ>= ` 1 ) \/ ( ( 0 + 1 ) ... ( N - 1 ) ) e. Fin ) -> sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) 0 = 0 ) |
|
| 180 | 178 179 | syl | |- ( ph -> sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) 0 = 0 ) |
| 181 | 176 177 180 | 3eqtr3d | |- ( ph -> ( sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) = 0 ) |
| 182 | 181 | oveq2d | |- ( ph -> ( ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) + ( sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) ) = ( ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) + 0 ) ) |
| 183 | 146 | addridd | |- ( ph -> ( ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) + 0 ) = ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) ) |
| 184 | 182 183 | eqtrd | |- ( ph -> ( ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) + ( sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) ) = ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) ) |
| 185 | 150 151 184 | 3eqtrd | |- ( ph -> ( ( sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) + ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) = ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) ) |
| 186 | 185 | oveq1d | |- ( ph -> ( ( ( sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ ( k - 1 ) ) x. ( A ^ k ) ) + ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) + 1 ) = ( ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) + 1 ) ) |
| 187 | 131 148 186 | 3eqtr2d | |- ( ph -> ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ ( k + 1 ) ) ) + sum_ k e. ( 0 ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) = ( ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) + 1 ) ) |
| 188 | 14 26 187 | 3eqtrd | |- ( ph -> ( ( A + 1 ) x. sum_ k e. ( 0 ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) = ( ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) + 1 ) ) |
| 189 | 188 | eqcomd | |- ( ph -> ( ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) + 1 ) = ( ( A + 1 ) x. sum_ k e. ( 0 ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) ) |