This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Index shift of a finite sum. (Contributed by NM, 27-Nov-2005) (Revised by Mario Carneiro, 24-Apr-2014) (Proof shortened by AV, 8-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumrev.1 | |- ( ph -> K e. ZZ ) |
|
| fsumrev.2 | |- ( ph -> M e. ZZ ) |
||
| fsumrev.3 | |- ( ph -> N e. ZZ ) |
||
| fsumrev.4 | |- ( ( ph /\ j e. ( M ... N ) ) -> A e. CC ) |
||
| fsumshft.5 | |- ( j = ( k - K ) -> A = B ) |
||
| Assertion | fsumshft | |- ( ph -> sum_ j e. ( M ... N ) A = sum_ k e. ( ( M + K ) ... ( N + K ) ) B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumrev.1 | |- ( ph -> K e. ZZ ) |
|
| 2 | fsumrev.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | fsumrev.3 | |- ( ph -> N e. ZZ ) |
|
| 4 | fsumrev.4 | |- ( ( ph /\ j e. ( M ... N ) ) -> A e. CC ) |
|
| 5 | fsumshft.5 | |- ( j = ( k - K ) -> A = B ) |
|
| 6 | fzfid | |- ( ph -> ( ( M + K ) ... ( N + K ) ) e. Fin ) |
|
| 7 | 1 2 3 | mptfzshft | |- ( ph -> ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) : ( ( M + K ) ... ( N + K ) ) -1-1-onto-> ( M ... N ) ) |
| 8 | oveq1 | |- ( j = k -> ( j - K ) = ( k - K ) ) |
|
| 9 | eqid | |- ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) = ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) |
|
| 10 | ovex | |- ( k - K ) e. _V |
|
| 11 | 8 9 10 | fvmpt | |- ( k e. ( ( M + K ) ... ( N + K ) ) -> ( ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) ` k ) = ( k - K ) ) |
| 12 | 11 | adantl | |- ( ( ph /\ k e. ( ( M + K ) ... ( N + K ) ) ) -> ( ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) ` k ) = ( k - K ) ) |
| 13 | 5 6 7 12 4 | fsumf1o | |- ( ph -> sum_ j e. ( M ... N ) A = sum_ k e. ( ( M + K ) ... ( N + K ) ) B ) |