This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An odd power of a number increased by 1 expressed by a product with a finite sum. (Contributed by AV, 15-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwp1fsum.a | |- ( ph -> A e. CC ) |
|
| pwp1fsum.n | |- ( ph -> N e. NN ) |
||
| oddpwp1fsum.n | |- ( ph -> -. 2 || N ) |
||
| Assertion | oddpwp1fsum | |- ( ph -> ( ( A ^ N ) + 1 ) = ( ( A + 1 ) x. sum_ k e. ( 0 ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwp1fsum.a | |- ( ph -> A e. CC ) |
|
| 2 | pwp1fsum.n | |- ( ph -> N e. NN ) |
|
| 3 | oddpwp1fsum.n | |- ( ph -> -. 2 || N ) |
|
| 4 | 2 | nnzd | |- ( ph -> N e. ZZ ) |
| 5 | oddm1even | |- ( N e. ZZ -> ( -. 2 || N <-> 2 || ( N - 1 ) ) ) |
|
| 6 | 4 5 | syl | |- ( ph -> ( -. 2 || N <-> 2 || ( N - 1 ) ) ) |
| 7 | 3 6 | mpbid | |- ( ph -> 2 || ( N - 1 ) ) |
| 8 | m1expe | |- ( 2 || ( N - 1 ) -> ( -u 1 ^ ( N - 1 ) ) = 1 ) |
|
| 9 | 7 8 | syl | |- ( ph -> ( -u 1 ^ ( N - 1 ) ) = 1 ) |
| 10 | 9 | oveq1d | |- ( ph -> ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) = ( 1 x. ( A ^ N ) ) ) |
| 11 | 10 | oveq1d | |- ( ph -> ( ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) + 1 ) = ( ( 1 x. ( A ^ N ) ) + 1 ) ) |
| 12 | 1 2 | pwp1fsum | |- ( ph -> ( ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) + 1 ) = ( ( A + 1 ) x. sum_ k e. ( 0 ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) ) |
| 13 | 2 | nnnn0d | |- ( ph -> N e. NN0 ) |
| 14 | 1 13 | expcld | |- ( ph -> ( A ^ N ) e. CC ) |
| 15 | 14 | mullidd | |- ( ph -> ( 1 x. ( A ^ N ) ) = ( A ^ N ) ) |
| 16 | 15 | oveq1d | |- ( ph -> ( ( 1 x. ( A ^ N ) ) + 1 ) = ( ( A ^ N ) + 1 ) ) |
| 17 | 11 12 16 | 3eqtr3rd | |- ( ph -> ( ( A ^ N ) + 1 ) = ( ( A + 1 ) x. sum_ k e. ( 0 ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) ) |