This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of an element in a subgroup is the same as the inverse in the larger group. (Contributed by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subg0.h | |- H = ( G |`s S ) |
|
| subginv.i | |- I = ( invg ` G ) |
||
| subginv.j | |- J = ( invg ` H ) |
||
| Assertion | subginv | |- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> ( I ` X ) = ( J ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subg0.h | |- H = ( G |`s S ) |
|
| 2 | subginv.i | |- I = ( invg ` G ) |
|
| 3 | subginv.j | |- J = ( invg ` H ) |
|
| 4 | 1 | subggrp | |- ( S e. ( SubGrp ` G ) -> H e. Grp ) |
| 5 | 1 | subgbas | |- ( S e. ( SubGrp ` G ) -> S = ( Base ` H ) ) |
| 6 | 5 | eleq2d | |- ( S e. ( SubGrp ` G ) -> ( X e. S <-> X e. ( Base ` H ) ) ) |
| 7 | 6 | biimpa | |- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> X e. ( Base ` H ) ) |
| 8 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 9 | eqid | |- ( +g ` H ) = ( +g ` H ) |
|
| 10 | eqid | |- ( 0g ` H ) = ( 0g ` H ) |
|
| 11 | 8 9 10 3 | grprinv | |- ( ( H e. Grp /\ X e. ( Base ` H ) ) -> ( X ( +g ` H ) ( J ` X ) ) = ( 0g ` H ) ) |
| 12 | 4 7 11 | syl2an2r | |- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> ( X ( +g ` H ) ( J ` X ) ) = ( 0g ` H ) ) |
| 13 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 14 | 1 13 | ressplusg | |- ( S e. ( SubGrp ` G ) -> ( +g ` G ) = ( +g ` H ) ) |
| 15 | 14 | adantr | |- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> ( +g ` G ) = ( +g ` H ) ) |
| 16 | 15 | oveqd | |- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> ( X ( +g ` G ) ( J ` X ) ) = ( X ( +g ` H ) ( J ` X ) ) ) |
| 17 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 18 | 1 17 | subg0 | |- ( S e. ( SubGrp ` G ) -> ( 0g ` G ) = ( 0g ` H ) ) |
| 19 | 18 | adantr | |- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> ( 0g ` G ) = ( 0g ` H ) ) |
| 20 | 12 16 19 | 3eqtr4d | |- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> ( X ( +g ` G ) ( J ` X ) ) = ( 0g ` G ) ) |
| 21 | subgrcl | |- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 22 | 21 | adantr | |- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> G e. Grp ) |
| 23 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 24 | 23 | subgss | |- ( S e. ( SubGrp ` G ) -> S C_ ( Base ` G ) ) |
| 25 | 24 | sselda | |- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> X e. ( Base ` G ) ) |
| 26 | 8 3 | grpinvcl | |- ( ( H e. Grp /\ X e. ( Base ` H ) ) -> ( J ` X ) e. ( Base ` H ) ) |
| 27 | 26 | ex | |- ( H e. Grp -> ( X e. ( Base ` H ) -> ( J ` X ) e. ( Base ` H ) ) ) |
| 28 | 4 27 | syl | |- ( S e. ( SubGrp ` G ) -> ( X e. ( Base ` H ) -> ( J ` X ) e. ( Base ` H ) ) ) |
| 29 | 5 | eleq2d | |- ( S e. ( SubGrp ` G ) -> ( ( J ` X ) e. S <-> ( J ` X ) e. ( Base ` H ) ) ) |
| 30 | 28 6 29 | 3imtr4d | |- ( S e. ( SubGrp ` G ) -> ( X e. S -> ( J ` X ) e. S ) ) |
| 31 | 30 | imp | |- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> ( J ` X ) e. S ) |
| 32 | 24 | sselda | |- ( ( S e. ( SubGrp ` G ) /\ ( J ` X ) e. S ) -> ( J ` X ) e. ( Base ` G ) ) |
| 33 | 31 32 | syldan | |- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> ( J ` X ) e. ( Base ` G ) ) |
| 34 | 23 13 17 2 | grpinvid1 | |- ( ( G e. Grp /\ X e. ( Base ` G ) /\ ( J ` X ) e. ( Base ` G ) ) -> ( ( I ` X ) = ( J ` X ) <-> ( X ( +g ` G ) ( J ` X ) ) = ( 0g ` G ) ) ) |
| 35 | 22 25 33 34 | syl3anc | |- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> ( ( I ` X ) = ( J ` X ) <-> ( X ( +g ` G ) ( J ` X ) ) = ( 0g ` G ) ) ) |
| 36 | 20 35 | mpbird | |- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> ( I ` X ) = ( J ` X ) ) |