This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplicative inverse in the field of complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfldinv | |- ( ( X e. CC /\ X =/= 0 ) -> ( ( invr ` CCfld ) ` X ) = ( 1 / X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn | |- ( X e. ( CC \ { 0 } ) <-> ( X e. CC /\ X =/= 0 ) ) |
|
| 2 | cnring | |- CCfld e. Ring |
|
| 3 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 4 | cnfld0 | |- 0 = ( 0g ` CCfld ) |
|
| 5 | cndrng | |- CCfld e. DivRing |
|
| 6 | 3 4 5 | drngui | |- ( CC \ { 0 } ) = ( Unit ` CCfld ) |
| 7 | cnflddiv | |- / = ( /r ` CCfld ) |
|
| 8 | cnfld1 | |- 1 = ( 1r ` CCfld ) |
|
| 9 | eqid | |- ( invr ` CCfld ) = ( invr ` CCfld ) |
|
| 10 | 3 6 7 8 9 | ringinvdv | |- ( ( CCfld e. Ring /\ X e. ( CC \ { 0 } ) ) -> ( ( invr ` CCfld ) ` X ) = ( 1 / X ) ) |
| 11 | 2 10 | mpan | |- ( X e. ( CC \ { 0 } ) -> ( ( invr ` CCfld ) ` X ) = ( 1 / X ) ) |
| 12 | 1 11 | sylbir | |- ( ( X e. CC /\ X =/= 0 ) -> ( ( invr ` CCfld ) ` X ) = ( 1 / X ) ) |