This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplicativity of the permutation sign function. (Contributed by SO, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgninv.s | |- S = ( SymGrp ` D ) |
|
| psgninv.n | |- N = ( pmSgn ` D ) |
||
| psgninv.p | |- P = ( Base ` S ) |
||
| Assertion | psgnco | |- ( ( D e. Fin /\ F e. P /\ G e. P ) -> ( N ` ( F o. G ) ) = ( ( N ` F ) x. ( N ` G ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgninv.s | |- S = ( SymGrp ` D ) |
|
| 2 | psgninv.n | |- N = ( pmSgn ` D ) |
|
| 3 | psgninv.p | |- P = ( Base ` S ) |
|
| 4 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 5 | 1 3 4 | symgov | |- ( ( F e. P /\ G e. P ) -> ( F ( +g ` S ) G ) = ( F o. G ) ) |
| 6 | 5 | 3adant1 | |- ( ( D e. Fin /\ F e. P /\ G e. P ) -> ( F ( +g ` S ) G ) = ( F o. G ) ) |
| 7 | 6 | fveq2d | |- ( ( D e. Fin /\ F e. P /\ G e. P ) -> ( N ` ( F ( +g ` S ) G ) ) = ( N ` ( F o. G ) ) ) |
| 8 | eqid | |- ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
|
| 9 | 1 2 8 | psgnghm2 | |- ( D e. Fin -> N e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 10 | prex | |- { 1 , -u 1 } e. _V |
|
| 11 | eqid | |- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
|
| 12 | cnfldmul | |- x. = ( .r ` CCfld ) |
|
| 13 | 11 12 | mgpplusg | |- x. = ( +g ` ( mulGrp ` CCfld ) ) |
| 14 | 8 13 | ressplusg | |- ( { 1 , -u 1 } e. _V -> x. = ( +g ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 15 | 10 14 | ax-mp | |- x. = ( +g ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) |
| 16 | 3 4 15 | ghmlin | |- ( ( N e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) /\ F e. P /\ G e. P ) -> ( N ` ( F ( +g ` S ) G ) ) = ( ( N ` F ) x. ( N ` G ) ) ) |
| 17 | 9 16 | syl3an1 | |- ( ( D e. Fin /\ F e. P /\ G e. P ) -> ( N ` ( F ( +g ` S ) G ) ) = ( ( N ` F ) x. ( N ` G ) ) ) |
| 18 | 7 17 | eqtr3d | |- ( ( D e. Fin /\ F e. P /\ G e. P ) -> ( N ` ( F o. G ) ) = ( ( N ` F ) x. ( N ` G ) ) ) |