This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplicative inverse function for a division ring. (Contributed by NM, 21-Sep-2011) (Revised by Mario Carneiro, 25-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invrfval.u | |- U = ( Unit ` R ) |
|
| invrfval.g | |- G = ( ( mulGrp ` R ) |`s U ) |
||
| invrfval.i | |- I = ( invr ` R ) |
||
| Assertion | invrfval | |- I = ( invg ` G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invrfval.u | |- U = ( Unit ` R ) |
|
| 2 | invrfval.g | |- G = ( ( mulGrp ` R ) |`s U ) |
|
| 3 | invrfval.i | |- I = ( invr ` R ) |
|
| 4 | fveq2 | |- ( r = R -> ( mulGrp ` r ) = ( mulGrp ` R ) ) |
|
| 5 | fveq2 | |- ( r = R -> ( Unit ` r ) = ( Unit ` R ) ) |
|
| 6 | 5 1 | eqtr4di | |- ( r = R -> ( Unit ` r ) = U ) |
| 7 | 4 6 | oveq12d | |- ( r = R -> ( ( mulGrp ` r ) |`s ( Unit ` r ) ) = ( ( mulGrp ` R ) |`s U ) ) |
| 8 | 7 2 | eqtr4di | |- ( r = R -> ( ( mulGrp ` r ) |`s ( Unit ` r ) ) = G ) |
| 9 | 8 | fveq2d | |- ( r = R -> ( invg ` ( ( mulGrp ` r ) |`s ( Unit ` r ) ) ) = ( invg ` G ) ) |
| 10 | df-invr | |- invr = ( r e. _V |-> ( invg ` ( ( mulGrp ` r ) |`s ( Unit ` r ) ) ) ) |
|
| 11 | fvex | |- ( invg ` G ) e. _V |
|
| 12 | 9 10 11 | fvmpt | |- ( R e. _V -> ( invr ` R ) = ( invg ` G ) ) |
| 13 | fvprc | |- ( -. R e. _V -> ( invr ` R ) = (/) ) |
|
| 14 | base0 | |- (/) = ( Base ` (/) ) |
|
| 15 | eqid | |- ( invg ` (/) ) = ( invg ` (/) ) |
|
| 16 | 14 15 | grpinvfn | |- ( invg ` (/) ) Fn (/) |
| 17 | fn0 | |- ( ( invg ` (/) ) Fn (/) <-> ( invg ` (/) ) = (/) ) |
|
| 18 | 16 17 | mpbi | |- ( invg ` (/) ) = (/) |
| 19 | 13 18 | eqtr4di | |- ( -. R e. _V -> ( invr ` R ) = ( invg ` (/) ) ) |
| 20 | fvprc | |- ( -. R e. _V -> ( mulGrp ` R ) = (/) ) |
|
| 21 | 20 | oveq1d | |- ( -. R e. _V -> ( ( mulGrp ` R ) |`s U ) = ( (/) |`s U ) ) |
| 22 | 2 21 | eqtrid | |- ( -. R e. _V -> G = ( (/) |`s U ) ) |
| 23 | ress0 | |- ( (/) |`s U ) = (/) |
|
| 24 | 22 23 | eqtrdi | |- ( -. R e. _V -> G = (/) ) |
| 25 | 24 | fveq2d | |- ( -. R e. _V -> ( invg ` G ) = ( invg ` (/) ) ) |
| 26 | 19 25 | eqtr4d | |- ( -. R e. _V -> ( invr ` R ) = ( invg ` G ) ) |
| 27 | 12 26 | pm2.61i | |- ( invr ` R ) = ( invg ` G ) |
| 28 | 3 27 | eqtri | |- I = ( invg ` G ) |