This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move negative sign inside of a division. (Contributed by Mario Carneiro, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divneg2 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> -u ( A / B ) = ( A / -u B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divneg | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> -u ( A / B ) = ( -u A / B ) ) |
|
| 2 | negcl | |- ( A e. CC -> -u A e. CC ) |
|
| 3 | div2neg | |- ( ( -u A e. CC /\ B e. CC /\ B =/= 0 ) -> ( -u -u A / -u B ) = ( -u A / B ) ) |
|
| 4 | 2 3 | syl3an1 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( -u -u A / -u B ) = ( -u A / B ) ) |
| 5 | negneg | |- ( A e. CC -> -u -u A = A ) |
|
| 6 | 5 | 3ad2ant1 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> -u -u A = A ) |
| 7 | 6 | oveq1d | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( -u -u A / -u B ) = ( A / -u B ) ) |
| 8 | 1 4 7 | 3eqtr2d | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> -u ( A / B ) = ( A / -u B ) ) |