This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The finitary permutations are a subgroup. (Contributed by Stefan O'Rear, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgneldm.g | |- G = ( SymGrp ` D ) |
|
| psgneldm.n | |- N = ( pmSgn ` D ) |
||
| Assertion | psgndmsubg | |- ( D e. V -> dom N e. ( SubGrp ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgneldm.g | |- G = ( SymGrp ` D ) |
|
| 2 | psgneldm.n | |- N = ( pmSgn ` D ) |
|
| 3 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 4 | eqid | |- { p e. ( Base ` G ) | dom ( p \ _I ) e. Fin } = { p e. ( Base ` G ) | dom ( p \ _I ) e. Fin } |
|
| 5 | 1 3 4 2 | psgnfn | |- N Fn { p e. ( Base ` G ) | dom ( p \ _I ) e. Fin } |
| 6 | fndm | |- ( N Fn { p e. ( Base ` G ) | dom ( p \ _I ) e. Fin } -> dom N = { p e. ( Base ` G ) | dom ( p \ _I ) e. Fin } ) |
|
| 7 | 5 6 | ax-mp | |- dom N = { p e. ( Base ` G ) | dom ( p \ _I ) e. Fin } |
| 8 | 1 3 | symgfisg | |- ( D e. V -> { p e. ( Base ` G ) | dom ( p \ _I ) e. Fin } e. ( SubGrp ` G ) ) |
| 9 | 7 8 | eqeltrid | |- ( D e. V -> dom N e. ( SubGrp ` G ) ) |