This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finitary permutation has at least one representation for its parity. (Contributed by Stefan O'Rear, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnval.g | |- G = ( SymGrp ` D ) |
|
| psgnval.t | |- T = ran ( pmTrsp ` D ) |
||
| psgnval.n | |- N = ( pmSgn ` D ) |
||
| Assertion | psgnvali | |- ( P e. dom N -> E. w e. Word T ( P = ( G gsum w ) /\ ( N ` P ) = ( -u 1 ^ ( # ` w ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnval.g | |- G = ( SymGrp ` D ) |
|
| 2 | psgnval.t | |- T = ran ( pmTrsp ` D ) |
|
| 3 | psgnval.n | |- N = ( pmSgn ` D ) |
|
| 4 | 1 2 3 | psgnval | |- ( P e. dom N -> ( N ` P ) = ( iota s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 5 | 1 2 3 | psgneu | |- ( P e. dom N -> E! s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) |
| 6 | iotacl | |- ( E! s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) -> ( iota s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) e. { s | E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) } ) |
|
| 7 | 5 6 | syl | |- ( P e. dom N -> ( iota s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) e. { s | E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) } ) |
| 8 | 4 7 | eqeltrd | |- ( P e. dom N -> ( N ` P ) e. { s | E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) } ) |
| 9 | fvex | |- ( N ` P ) e. _V |
|
| 10 | eqeq1 | |- ( s = ( N ` P ) -> ( s = ( -u 1 ^ ( # ` w ) ) <-> ( N ` P ) = ( -u 1 ^ ( # ` w ) ) ) ) |
|
| 11 | 10 | anbi2d | |- ( s = ( N ` P ) -> ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> ( P = ( G gsum w ) /\ ( N ` P ) = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 12 | 11 | rexbidv | |- ( s = ( N ` P ) -> ( E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> E. w e. Word T ( P = ( G gsum w ) /\ ( N ` P ) = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 13 | 9 12 | elab | |- ( ( N ` P ) e. { s | E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) } <-> E. w e. Word T ( P = ( G gsum w ) /\ ( N ` P ) = ( -u 1 ^ ( # ` w ) ) ) ) |
| 14 | 8 13 | sylib | |- ( P e. dom N -> E. w e. Word T ( P = ( G gsum w ) /\ ( N ` P ) = ( -u 1 ^ ( # ` w ) ) ) ) |