This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of integer exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | m1expcl2 | |- ( N e. ZZ -> ( -u 1 ^ N ) e. { -u 1 , 1 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negex | |- -u 1 e. _V |
|
| 2 | 1 | prid1 | |- -u 1 e. { -u 1 , 1 } |
| 3 | neg1ne0 | |- -u 1 =/= 0 |
|
| 4 | neg1cn | |- -u 1 e. CC |
|
| 5 | ax-1cn | |- 1 e. CC |
|
| 6 | prssi | |- ( ( -u 1 e. CC /\ 1 e. CC ) -> { -u 1 , 1 } C_ CC ) |
|
| 7 | 4 5 6 | mp2an | |- { -u 1 , 1 } C_ CC |
| 8 | elpri | |- ( x e. { -u 1 , 1 } -> ( x = -u 1 \/ x = 1 ) ) |
|
| 9 | 7 | sseli | |- ( y e. { -u 1 , 1 } -> y e. CC ) |
| 10 | 9 | mulm1d | |- ( y e. { -u 1 , 1 } -> ( -u 1 x. y ) = -u y ) |
| 11 | elpri | |- ( y e. { -u 1 , 1 } -> ( y = -u 1 \/ y = 1 ) ) |
|
| 12 | negeq | |- ( y = -u 1 -> -u y = -u -u 1 ) |
|
| 13 | negneg1e1 | |- -u -u 1 = 1 |
|
| 14 | 1ex | |- 1 e. _V |
|
| 15 | 14 | prid2 | |- 1 e. { -u 1 , 1 } |
| 16 | 13 15 | eqeltri | |- -u -u 1 e. { -u 1 , 1 } |
| 17 | 12 16 | eqeltrdi | |- ( y = -u 1 -> -u y e. { -u 1 , 1 } ) |
| 18 | negeq | |- ( y = 1 -> -u y = -u 1 ) |
|
| 19 | 18 2 | eqeltrdi | |- ( y = 1 -> -u y e. { -u 1 , 1 } ) |
| 20 | 17 19 | jaoi | |- ( ( y = -u 1 \/ y = 1 ) -> -u y e. { -u 1 , 1 } ) |
| 21 | 11 20 | syl | |- ( y e. { -u 1 , 1 } -> -u y e. { -u 1 , 1 } ) |
| 22 | 10 21 | eqeltrd | |- ( y e. { -u 1 , 1 } -> ( -u 1 x. y ) e. { -u 1 , 1 } ) |
| 23 | oveq1 | |- ( x = -u 1 -> ( x x. y ) = ( -u 1 x. y ) ) |
|
| 24 | 23 | eleq1d | |- ( x = -u 1 -> ( ( x x. y ) e. { -u 1 , 1 } <-> ( -u 1 x. y ) e. { -u 1 , 1 } ) ) |
| 25 | 22 24 | imbitrrid | |- ( x = -u 1 -> ( y e. { -u 1 , 1 } -> ( x x. y ) e. { -u 1 , 1 } ) ) |
| 26 | 9 | mullidd | |- ( y e. { -u 1 , 1 } -> ( 1 x. y ) = y ) |
| 27 | id | |- ( y e. { -u 1 , 1 } -> y e. { -u 1 , 1 } ) |
|
| 28 | 26 27 | eqeltrd | |- ( y e. { -u 1 , 1 } -> ( 1 x. y ) e. { -u 1 , 1 } ) |
| 29 | oveq1 | |- ( x = 1 -> ( x x. y ) = ( 1 x. y ) ) |
|
| 30 | 29 | eleq1d | |- ( x = 1 -> ( ( x x. y ) e. { -u 1 , 1 } <-> ( 1 x. y ) e. { -u 1 , 1 } ) ) |
| 31 | 28 30 | imbitrrid | |- ( x = 1 -> ( y e. { -u 1 , 1 } -> ( x x. y ) e. { -u 1 , 1 } ) ) |
| 32 | 25 31 | jaoi | |- ( ( x = -u 1 \/ x = 1 ) -> ( y e. { -u 1 , 1 } -> ( x x. y ) e. { -u 1 , 1 } ) ) |
| 33 | 8 32 | syl | |- ( x e. { -u 1 , 1 } -> ( y e. { -u 1 , 1 } -> ( x x. y ) e. { -u 1 , 1 } ) ) |
| 34 | 33 | imp | |- ( ( x e. { -u 1 , 1 } /\ y e. { -u 1 , 1 } ) -> ( x x. y ) e. { -u 1 , 1 } ) |
| 35 | oveq2 | |- ( x = -u 1 -> ( 1 / x ) = ( 1 / -u 1 ) ) |
|
| 36 | ax-1ne0 | |- 1 =/= 0 |
|
| 37 | divneg2 | |- ( ( 1 e. CC /\ 1 e. CC /\ 1 =/= 0 ) -> -u ( 1 / 1 ) = ( 1 / -u 1 ) ) |
|
| 38 | 5 5 36 37 | mp3an | |- -u ( 1 / 1 ) = ( 1 / -u 1 ) |
| 39 | 1div1e1 | |- ( 1 / 1 ) = 1 |
|
| 40 | 39 | negeqi | |- -u ( 1 / 1 ) = -u 1 |
| 41 | 38 40 | eqtr3i | |- ( 1 / -u 1 ) = -u 1 |
| 42 | 41 2 | eqeltri | |- ( 1 / -u 1 ) e. { -u 1 , 1 } |
| 43 | 35 42 | eqeltrdi | |- ( x = -u 1 -> ( 1 / x ) e. { -u 1 , 1 } ) |
| 44 | oveq2 | |- ( x = 1 -> ( 1 / x ) = ( 1 / 1 ) ) |
|
| 45 | 39 15 | eqeltri | |- ( 1 / 1 ) e. { -u 1 , 1 } |
| 46 | 44 45 | eqeltrdi | |- ( x = 1 -> ( 1 / x ) e. { -u 1 , 1 } ) |
| 47 | 43 46 | jaoi | |- ( ( x = -u 1 \/ x = 1 ) -> ( 1 / x ) e. { -u 1 , 1 } ) |
| 48 | 8 47 | syl | |- ( x e. { -u 1 , 1 } -> ( 1 / x ) e. { -u 1 , 1 } ) |
| 49 | 48 | adantr | |- ( ( x e. { -u 1 , 1 } /\ x =/= 0 ) -> ( 1 / x ) e. { -u 1 , 1 } ) |
| 50 | 7 34 15 49 | expcl2lem | |- ( ( -u 1 e. { -u 1 , 1 } /\ -u 1 =/= 0 /\ N e. ZZ ) -> ( -u 1 ^ N ) e. { -u 1 , 1 } ) |
| 51 | 2 3 50 | mp3an12 | |- ( N e. ZZ -> ( -u 1 ^ N ) e. { -u 1 , 1 } ) |