This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group of signs under multiplication. (Contributed by Stefan O'Rear, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnmsgngrp.u | |- U = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
|
| Assertion | cnmsgngrp | |- U e. Grp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmsgngrp.u | |- U = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
|
| 2 | eqid | |- ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |
|
| 3 | 2 | cnmsgnsubg | |- { 1 , -u 1 } e. ( SubGrp ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) |
| 4 | cnex | |- CC e. _V |
|
| 5 | 4 | difexi | |- ( CC \ { 0 } ) e. _V |
| 6 | ax-1cn | |- 1 e. CC |
|
| 7 | ax-1ne0 | |- 1 =/= 0 |
|
| 8 | eldifsn | |- ( 1 e. ( CC \ { 0 } ) <-> ( 1 e. CC /\ 1 =/= 0 ) ) |
|
| 9 | 6 7 8 | mpbir2an | |- 1 e. ( CC \ { 0 } ) |
| 10 | neg1cn | |- -u 1 e. CC |
|
| 11 | neg1ne0 | |- -u 1 =/= 0 |
|
| 12 | eldifsn | |- ( -u 1 e. ( CC \ { 0 } ) <-> ( -u 1 e. CC /\ -u 1 =/= 0 ) ) |
|
| 13 | 10 11 12 | mpbir2an | |- -u 1 e. ( CC \ { 0 } ) |
| 14 | prssi | |- ( ( 1 e. ( CC \ { 0 } ) /\ -u 1 e. ( CC \ { 0 } ) ) -> { 1 , -u 1 } C_ ( CC \ { 0 } ) ) |
|
| 15 | 9 13 14 | mp2an | |- { 1 , -u 1 } C_ ( CC \ { 0 } ) |
| 16 | ressabs | |- ( ( ( CC \ { 0 } ) e. _V /\ { 1 , -u 1 } C_ ( CC \ { 0 } ) ) -> ( ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) |
|
| 17 | 5 15 16 | mp2an | |- ( ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
| 18 | 1 17 | eqtr4i | |- U = ( ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |`s { 1 , -u 1 } ) |
| 19 | 18 | subggrp | |- ( { 1 , -u 1 } e. ( SubGrp ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) -> U e. Grp ) |
| 20 | 3 19 | ax-mp | |- U e. Grp |