This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any representation of a permutation is length matching the permutation sign. (Contributed by Stefan O'Rear, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnval.g | |- G = ( SymGrp ` D ) |
|
| psgnval.t | |- T = ran ( pmTrsp ` D ) |
||
| psgnval.n | |- N = ( pmSgn ` D ) |
||
| Assertion | psgnvalii | |- ( ( D e. V /\ W e. Word T ) -> ( N ` ( G gsum W ) ) = ( -u 1 ^ ( # ` W ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnval.g | |- G = ( SymGrp ` D ) |
|
| 2 | psgnval.t | |- T = ran ( pmTrsp ` D ) |
|
| 3 | psgnval.n | |- N = ( pmSgn ` D ) |
|
| 4 | 1 2 3 | psgneldm2i | |- ( ( D e. V /\ W e. Word T ) -> ( G gsum W ) e. dom N ) |
| 5 | 1 2 3 | psgnval | |- ( ( G gsum W ) e. dom N -> ( N ` ( G gsum W ) ) = ( iota s E. w e. Word T ( ( G gsum W ) = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 6 | 4 5 | syl | |- ( ( D e. V /\ W e. Word T ) -> ( N ` ( G gsum W ) ) = ( iota s E. w e. Word T ( ( G gsum W ) = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 7 | simpr | |- ( ( D e. V /\ W e. Word T ) -> W e. Word T ) |
|
| 8 | eqidd | |- ( ( D e. V /\ W e. Word T ) -> ( G gsum W ) = ( G gsum W ) ) |
|
| 9 | eqidd | |- ( ( D e. V /\ W e. Word T ) -> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` W ) ) ) |
|
| 10 | oveq2 | |- ( w = W -> ( G gsum w ) = ( G gsum W ) ) |
|
| 11 | 10 | eqeq2d | |- ( w = W -> ( ( G gsum W ) = ( G gsum w ) <-> ( G gsum W ) = ( G gsum W ) ) ) |
| 12 | fveq2 | |- ( w = W -> ( # ` w ) = ( # ` W ) ) |
|
| 13 | 12 | oveq2d | |- ( w = W -> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` W ) ) ) |
| 14 | 13 | eqeq2d | |- ( w = W -> ( ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` w ) ) <-> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` W ) ) ) ) |
| 15 | 11 14 | anbi12d | |- ( w = W -> ( ( ( G gsum W ) = ( G gsum w ) /\ ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` w ) ) ) <-> ( ( G gsum W ) = ( G gsum W ) /\ ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` W ) ) ) ) ) |
| 16 | 15 | rspcev | |- ( ( W e. Word T /\ ( ( G gsum W ) = ( G gsum W ) /\ ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` W ) ) ) ) -> E. w e. Word T ( ( G gsum W ) = ( G gsum w ) /\ ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` w ) ) ) ) |
| 17 | 7 8 9 16 | syl12anc | |- ( ( D e. V /\ W e. Word T ) -> E. w e. Word T ( ( G gsum W ) = ( G gsum w ) /\ ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` w ) ) ) ) |
| 18 | ovexd | |- ( ( D e. V /\ W e. Word T ) -> ( -u 1 ^ ( # ` W ) ) e. _V ) |
|
| 19 | 1 2 3 | psgneu | |- ( ( G gsum W ) e. dom N -> E! s E. w e. Word T ( ( G gsum W ) = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) |
| 20 | 4 19 | syl | |- ( ( D e. V /\ W e. Word T ) -> E! s E. w e. Word T ( ( G gsum W ) = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) |
| 21 | eqeq1 | |- ( s = ( -u 1 ^ ( # ` W ) ) -> ( s = ( -u 1 ^ ( # ` w ) ) <-> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` w ) ) ) ) |
|
| 22 | 21 | anbi2d | |- ( s = ( -u 1 ^ ( # ` W ) ) -> ( ( ( G gsum W ) = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> ( ( G gsum W ) = ( G gsum w ) /\ ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 23 | 22 | rexbidv | |- ( s = ( -u 1 ^ ( # ` W ) ) -> ( E. w e. Word T ( ( G gsum W ) = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> E. w e. Word T ( ( G gsum W ) = ( G gsum w ) /\ ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 24 | 23 | adantl | |- ( ( ( D e. V /\ W e. Word T ) /\ s = ( -u 1 ^ ( # ` W ) ) ) -> ( E. w e. Word T ( ( G gsum W ) = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> E. w e. Word T ( ( G gsum W ) = ( G gsum w ) /\ ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 25 | 18 20 24 | iota2d | |- ( ( D e. V /\ W e. Word T ) -> ( E. w e. Word T ( ( G gsum W ) = ( G gsum w ) /\ ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` w ) ) ) <-> ( iota s E. w e. Word T ( ( G gsum W ) = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) = ( -u 1 ^ ( # ` W ) ) ) ) |
| 26 | 17 25 | mpbid | |- ( ( D e. V /\ W e. Word T ) -> ( iota s E. w e. Word T ( ( G gsum W ) = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) = ( -u 1 ^ ( # ` W ) ) ) |
| 27 | 6 26 | eqtrd | |- ( ( D e. V /\ W e. Word T ) -> ( N ` ( G gsum W ) ) = ( -u 1 ^ ( # ` W ) ) ) |