This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mumul . A multiple of a non-squarefree number is non-squarefree. (Contributed by Mario Carneiro, 3-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mumullem1 | |- ( ( ( A e. NN /\ B e. NN ) /\ ( mmu ` A ) = 0 ) -> ( mmu ` ( A x. B ) ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmz | |- ( p e. Prime -> p e. ZZ ) |
|
| 2 | 1 | adantl | |- ( ( ( A e. NN /\ B e. NN ) /\ p e. Prime ) -> p e. ZZ ) |
| 3 | zsqcl | |- ( p e. ZZ -> ( p ^ 2 ) e. ZZ ) |
|
| 4 | 2 3 | syl | |- ( ( ( A e. NN /\ B e. NN ) /\ p e. Prime ) -> ( p ^ 2 ) e. ZZ ) |
| 5 | nnz | |- ( A e. NN -> A e. ZZ ) |
|
| 6 | 5 | ad2antrr | |- ( ( ( A e. NN /\ B e. NN ) /\ p e. Prime ) -> A e. ZZ ) |
| 7 | nnz | |- ( B e. NN -> B e. ZZ ) |
|
| 8 | 7 | ad2antlr | |- ( ( ( A e. NN /\ B e. NN ) /\ p e. Prime ) -> B e. ZZ ) |
| 9 | dvdsmultr1 | |- ( ( ( p ^ 2 ) e. ZZ /\ A e. ZZ /\ B e. ZZ ) -> ( ( p ^ 2 ) || A -> ( p ^ 2 ) || ( A x. B ) ) ) |
|
| 10 | 4 6 8 9 | syl3anc | |- ( ( ( A e. NN /\ B e. NN ) /\ p e. Prime ) -> ( ( p ^ 2 ) || A -> ( p ^ 2 ) || ( A x. B ) ) ) |
| 11 | 10 | reximdva | |- ( ( A e. NN /\ B e. NN ) -> ( E. p e. Prime ( p ^ 2 ) || A -> E. p e. Prime ( p ^ 2 ) || ( A x. B ) ) ) |
| 12 | isnsqf | |- ( A e. NN -> ( ( mmu ` A ) = 0 <-> E. p e. Prime ( p ^ 2 ) || A ) ) |
|
| 13 | 12 | adantr | |- ( ( A e. NN /\ B e. NN ) -> ( ( mmu ` A ) = 0 <-> E. p e. Prime ( p ^ 2 ) || A ) ) |
| 14 | nnmulcl | |- ( ( A e. NN /\ B e. NN ) -> ( A x. B ) e. NN ) |
|
| 15 | isnsqf | |- ( ( A x. B ) e. NN -> ( ( mmu ` ( A x. B ) ) = 0 <-> E. p e. Prime ( p ^ 2 ) || ( A x. B ) ) ) |
|
| 16 | 14 15 | syl | |- ( ( A e. NN /\ B e. NN ) -> ( ( mmu ` ( A x. B ) ) = 0 <-> E. p e. Prime ( p ^ 2 ) || ( A x. B ) ) ) |
| 17 | 11 13 16 | 3imtr4d | |- ( ( A e. NN /\ B e. NN ) -> ( ( mmu ` A ) = 0 -> ( mmu ` ( A x. B ) ) = 0 ) ) |
| 18 | 17 | imp | |- ( ( ( A e. NN /\ B e. NN ) /\ ( mmu ` A ) = 0 ) -> ( mmu ` ( A x. B ) ) = 0 ) |