This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of primes less than A expressed using a finite set of integers. (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ppisval2 | |- ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) -> ( ( 0 [,] A ) i^i Prime ) = ( ( M ... ( |_ ` A ) ) i^i Prime ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ppisval | |- ( A e. RR -> ( ( 0 [,] A ) i^i Prime ) = ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) |
|
| 2 | 1 | adantr | |- ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) -> ( ( 0 [,] A ) i^i Prime ) = ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) |
| 3 | fzss1 | |- ( 2 e. ( ZZ>= ` M ) -> ( 2 ... ( |_ ` A ) ) C_ ( M ... ( |_ ` A ) ) ) |
|
| 4 | 3 | adantl | |- ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) -> ( 2 ... ( |_ ` A ) ) C_ ( M ... ( |_ ` A ) ) ) |
| 5 | 4 | ssrind | |- ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) -> ( ( 2 ... ( |_ ` A ) ) i^i Prime ) C_ ( ( M ... ( |_ ` A ) ) i^i Prime ) ) |
| 6 | simpr | |- ( ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) /\ x e. ( ( M ... ( |_ ` A ) ) i^i Prime ) ) -> x e. ( ( M ... ( |_ ` A ) ) i^i Prime ) ) |
|
| 7 | elin | |- ( x e. ( ( M ... ( |_ ` A ) ) i^i Prime ) <-> ( x e. ( M ... ( |_ ` A ) ) /\ x e. Prime ) ) |
|
| 8 | 6 7 | sylib | |- ( ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) /\ x e. ( ( M ... ( |_ ` A ) ) i^i Prime ) ) -> ( x e. ( M ... ( |_ ` A ) ) /\ x e. Prime ) ) |
| 9 | 8 | simprd | |- ( ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) /\ x e. ( ( M ... ( |_ ` A ) ) i^i Prime ) ) -> x e. Prime ) |
| 10 | prmuz2 | |- ( x e. Prime -> x e. ( ZZ>= ` 2 ) ) |
|
| 11 | 9 10 | syl | |- ( ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) /\ x e. ( ( M ... ( |_ ` A ) ) i^i Prime ) ) -> x e. ( ZZ>= ` 2 ) ) |
| 12 | 8 | simpld | |- ( ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) /\ x e. ( ( M ... ( |_ ` A ) ) i^i Prime ) ) -> x e. ( M ... ( |_ ` A ) ) ) |
| 13 | elfzuz3 | |- ( x e. ( M ... ( |_ ` A ) ) -> ( |_ ` A ) e. ( ZZ>= ` x ) ) |
|
| 14 | 12 13 | syl | |- ( ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) /\ x e. ( ( M ... ( |_ ` A ) ) i^i Prime ) ) -> ( |_ ` A ) e. ( ZZ>= ` x ) ) |
| 15 | elfzuzb | |- ( x e. ( 2 ... ( |_ ` A ) ) <-> ( x e. ( ZZ>= ` 2 ) /\ ( |_ ` A ) e. ( ZZ>= ` x ) ) ) |
|
| 16 | 11 14 15 | sylanbrc | |- ( ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) /\ x e. ( ( M ... ( |_ ` A ) ) i^i Prime ) ) -> x e. ( 2 ... ( |_ ` A ) ) ) |
| 17 | 16 9 | elind | |- ( ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) /\ x e. ( ( M ... ( |_ ` A ) ) i^i Prime ) ) -> x e. ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) |
| 18 | 5 17 | eqelssd | |- ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) -> ( ( 2 ... ( |_ ` A ) ) i^i Prime ) = ( ( M ... ( |_ ` A ) ) i^i Prime ) ) |
| 19 | 2 18 | eqtrd | |- ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) -> ( ( 0 [,] A ) i^i Prime ) = ( ( M ... ( |_ ` A ) ) i^i Prime ) ) |