This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the Chebyshev function. (Contributed by Mario Carneiro, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chtval | |- ( A e. RR -> ( theta ` A ) = sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` p ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( x = A -> ( 0 [,] x ) = ( 0 [,] A ) ) |
|
| 2 | 1 | ineq1d | |- ( x = A -> ( ( 0 [,] x ) i^i Prime ) = ( ( 0 [,] A ) i^i Prime ) ) |
| 3 | 2 | sumeq1d | |- ( x = A -> sum_ p e. ( ( 0 [,] x ) i^i Prime ) ( log ` p ) = sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` p ) ) |
| 4 | df-cht | |- theta = ( x e. RR |-> sum_ p e. ( ( 0 [,] x ) i^i Prime ) ( log ` p ) ) |
|
| 5 | sumex | |- sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` p ) e. _V |
|
| 6 | 3 4 5 | fvmpt | |- ( A e. RR -> ( theta ` A ) = sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` p ) ) |