This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The units of ZZ are the integers with norm 1 , i.e. 1 and -u 1 . (Contributed by Mario Carneiro, 5-Dec-2014) (Revised by AV, 10-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zringunit | |- ( A e. ( Unit ` ZZring ) <-> ( A e. ZZ /\ ( abs ` A ) = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zringbas | |- ZZ = ( Base ` ZZring ) |
|
| 2 | eqid | |- ( Unit ` ZZring ) = ( Unit ` ZZring ) |
|
| 3 | 1 2 | unitcl | |- ( A e. ( Unit ` ZZring ) -> A e. ZZ ) |
| 4 | zsubrg | |- ZZ e. ( SubRing ` CCfld ) |
|
| 5 | zgz | |- ( x e. ZZ -> x e. Z[i] ) |
|
| 6 | 5 | ssriv | |- ZZ C_ Z[i] |
| 7 | gzsubrg | |- Z[i] e. ( SubRing ` CCfld ) |
|
| 8 | eqid | |- ( CCfld |`s Z[i] ) = ( CCfld |`s Z[i] ) |
|
| 9 | 8 | subsubrg | |- ( Z[i] e. ( SubRing ` CCfld ) -> ( ZZ e. ( SubRing ` ( CCfld |`s Z[i] ) ) <-> ( ZZ e. ( SubRing ` CCfld ) /\ ZZ C_ Z[i] ) ) ) |
| 10 | 7 9 | ax-mp | |- ( ZZ e. ( SubRing ` ( CCfld |`s Z[i] ) ) <-> ( ZZ e. ( SubRing ` CCfld ) /\ ZZ C_ Z[i] ) ) |
| 11 | 4 6 10 | mpbir2an | |- ZZ e. ( SubRing ` ( CCfld |`s Z[i] ) ) |
| 12 | df-zring | |- ZZring = ( CCfld |`s ZZ ) |
|
| 13 | ressabs | |- ( ( Z[i] e. ( SubRing ` CCfld ) /\ ZZ C_ Z[i] ) -> ( ( CCfld |`s Z[i] ) |`s ZZ ) = ( CCfld |`s ZZ ) ) |
|
| 14 | 7 6 13 | mp2an | |- ( ( CCfld |`s Z[i] ) |`s ZZ ) = ( CCfld |`s ZZ ) |
| 15 | 12 14 | eqtr4i | |- ZZring = ( ( CCfld |`s Z[i] ) |`s ZZ ) |
| 16 | eqid | |- ( Unit ` ( CCfld |`s Z[i] ) ) = ( Unit ` ( CCfld |`s Z[i] ) ) |
|
| 17 | 15 16 2 | subrguss | |- ( ZZ e. ( SubRing ` ( CCfld |`s Z[i] ) ) -> ( Unit ` ZZring ) C_ ( Unit ` ( CCfld |`s Z[i] ) ) ) |
| 18 | 11 17 | ax-mp | |- ( Unit ` ZZring ) C_ ( Unit ` ( CCfld |`s Z[i] ) ) |
| 19 | 18 | sseli | |- ( A e. ( Unit ` ZZring ) -> A e. ( Unit ` ( CCfld |`s Z[i] ) ) ) |
| 20 | 8 | gzrngunit | |- ( A e. ( Unit ` ( CCfld |`s Z[i] ) ) <-> ( A e. Z[i] /\ ( abs ` A ) = 1 ) ) |
| 21 | 20 | simprbi | |- ( A e. ( Unit ` ( CCfld |`s Z[i] ) ) -> ( abs ` A ) = 1 ) |
| 22 | 19 21 | syl | |- ( A e. ( Unit ` ZZring ) -> ( abs ` A ) = 1 ) |
| 23 | 3 22 | jca | |- ( A e. ( Unit ` ZZring ) -> ( A e. ZZ /\ ( abs ` A ) = 1 ) ) |
| 24 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 25 | 24 | adantr | |- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> A e. CC ) |
| 26 | simpr | |- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> ( abs ` A ) = 1 ) |
|
| 27 | ax-1ne0 | |- 1 =/= 0 |
|
| 28 | 27 | a1i | |- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> 1 =/= 0 ) |
| 29 | 26 28 | eqnetrd | |- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> ( abs ` A ) =/= 0 ) |
| 30 | fveq2 | |- ( A = 0 -> ( abs ` A ) = ( abs ` 0 ) ) |
|
| 31 | abs0 | |- ( abs ` 0 ) = 0 |
|
| 32 | 30 31 | eqtrdi | |- ( A = 0 -> ( abs ` A ) = 0 ) |
| 33 | 32 | necon3i | |- ( ( abs ` A ) =/= 0 -> A =/= 0 ) |
| 34 | 29 33 | syl | |- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> A =/= 0 ) |
| 35 | eldifsn | |- ( A e. ( CC \ { 0 } ) <-> ( A e. CC /\ A =/= 0 ) ) |
|
| 36 | 25 34 35 | sylanbrc | |- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> A e. ( CC \ { 0 } ) ) |
| 37 | simpl | |- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> A e. ZZ ) |
|
| 38 | cnfldinv | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( invr ` CCfld ) ` A ) = ( 1 / A ) ) |
|
| 39 | 25 34 38 | syl2anc | |- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> ( ( invr ` CCfld ) ` A ) = ( 1 / A ) ) |
| 40 | zre | |- ( A e. ZZ -> A e. RR ) |
|
| 41 | 40 | adantr | |- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> A e. RR ) |
| 42 | absresq | |- ( A e. RR -> ( ( abs ` A ) ^ 2 ) = ( A ^ 2 ) ) |
|
| 43 | 41 42 | syl | |- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> ( ( abs ` A ) ^ 2 ) = ( A ^ 2 ) ) |
| 44 | 26 | oveq1d | |- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> ( ( abs ` A ) ^ 2 ) = ( 1 ^ 2 ) ) |
| 45 | sq1 | |- ( 1 ^ 2 ) = 1 |
|
| 46 | 44 45 | eqtrdi | |- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> ( ( abs ` A ) ^ 2 ) = 1 ) |
| 47 | 25 | sqvald | |- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> ( A ^ 2 ) = ( A x. A ) ) |
| 48 | 43 46 47 | 3eqtr3rd | |- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> ( A x. A ) = 1 ) |
| 49 | 1cnd | |- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> 1 e. CC ) |
|
| 50 | 49 25 25 34 | divmuld | |- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> ( ( 1 / A ) = A <-> ( A x. A ) = 1 ) ) |
| 51 | 48 50 | mpbird | |- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> ( 1 / A ) = A ) |
| 52 | 39 51 | eqtrd | |- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> ( ( invr ` CCfld ) ` A ) = A ) |
| 53 | 52 37 | eqeltrd | |- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> ( ( invr ` CCfld ) ` A ) e. ZZ ) |
| 54 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 55 | cnfld0 | |- 0 = ( 0g ` CCfld ) |
|
| 56 | cndrng | |- CCfld e. DivRing |
|
| 57 | 54 55 56 | drngui | |- ( CC \ { 0 } ) = ( Unit ` CCfld ) |
| 58 | eqid | |- ( invr ` CCfld ) = ( invr ` CCfld ) |
|
| 59 | 12 57 2 58 | subrgunit | |- ( ZZ e. ( SubRing ` CCfld ) -> ( A e. ( Unit ` ZZring ) <-> ( A e. ( CC \ { 0 } ) /\ A e. ZZ /\ ( ( invr ` CCfld ) ` A ) e. ZZ ) ) ) |
| 60 | 4 59 | ax-mp | |- ( A e. ( Unit ` ZZring ) <-> ( A e. ( CC \ { 0 } ) /\ A e. ZZ /\ ( ( invr ` CCfld ) ` A ) e. ZZ ) ) |
| 61 | 36 37 53 60 | syl3anbrc | |- ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> A e. ( Unit ` ZZring ) ) |
| 62 | 23 61 | impbii | |- ( A e. ( Unit ` ZZring ) <-> ( A e. ZZ /\ ( abs ` A ) = 1 ) ) |