This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only positive divisors are 1 and itself. Definition in ApostolNT p. 16. (Contributed by Paul Chapman, 26-Oct-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isprm2 | |- ( P e. Prime <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nprm | |- -. 1 e. Prime |
|
| 2 | eleq1 | |- ( P = 1 -> ( P e. Prime <-> 1 e. Prime ) ) |
|
| 3 | 2 | biimpcd | |- ( P e. Prime -> ( P = 1 -> 1 e. Prime ) ) |
| 4 | 1 3 | mtoi | |- ( P e. Prime -> -. P = 1 ) |
| 5 | 4 | neqned | |- ( P e. Prime -> P =/= 1 ) |
| 6 | 5 | pm4.71i | |- ( P e. Prime <-> ( P e. Prime /\ P =/= 1 ) ) |
| 7 | isprm | |- ( P e. Prime <-> ( P e. NN /\ { n e. NN | n || P } ~~ 2o ) ) |
|
| 8 | isprm2lem | |- ( ( P e. NN /\ P =/= 1 ) -> ( { n e. NN | n || P } ~~ 2o <-> { n e. NN | n || P } = { 1 , P } ) ) |
|
| 9 | eqss | |- ( { n e. NN | n || P } = { 1 , P } <-> ( { n e. NN | n || P } C_ { 1 , P } /\ { 1 , P } C_ { n e. NN | n || P } ) ) |
|
| 10 | 9 | imbi2i | |- ( ( P e. NN -> { n e. NN | n || P } = { 1 , P } ) <-> ( P e. NN -> ( { n e. NN | n || P } C_ { 1 , P } /\ { 1 , P } C_ { n e. NN | n || P } ) ) ) |
| 11 | 1idssfct | |- ( P e. NN -> { 1 , P } C_ { n e. NN | n || P } ) |
|
| 12 | jcab | |- ( ( P e. NN -> ( { n e. NN | n || P } C_ { 1 , P } /\ { 1 , P } C_ { n e. NN | n || P } ) ) <-> ( ( P e. NN -> { n e. NN | n || P } C_ { 1 , P } ) /\ ( P e. NN -> { 1 , P } C_ { n e. NN | n || P } ) ) ) |
|
| 13 | 11 12 | mpbiran2 | |- ( ( P e. NN -> ( { n e. NN | n || P } C_ { 1 , P } /\ { 1 , P } C_ { n e. NN | n || P } ) ) <-> ( P e. NN -> { n e. NN | n || P } C_ { 1 , P } ) ) |
| 14 | 10 13 | bitri | |- ( ( P e. NN -> { n e. NN | n || P } = { 1 , P } ) <-> ( P e. NN -> { n e. NN | n || P } C_ { 1 , P } ) ) |
| 15 | 14 | pm5.74ri | |- ( P e. NN -> ( { n e. NN | n || P } = { 1 , P } <-> { n e. NN | n || P } C_ { 1 , P } ) ) |
| 16 | 15 | adantr | |- ( ( P e. NN /\ P =/= 1 ) -> ( { n e. NN | n || P } = { 1 , P } <-> { n e. NN | n || P } C_ { 1 , P } ) ) |
| 17 | 8 16 | bitrd | |- ( ( P e. NN /\ P =/= 1 ) -> ( { n e. NN | n || P } ~~ 2o <-> { n e. NN | n || P } C_ { 1 , P } ) ) |
| 18 | 17 | expcom | |- ( P =/= 1 -> ( P e. NN -> ( { n e. NN | n || P } ~~ 2o <-> { n e. NN | n || P } C_ { 1 , P } ) ) ) |
| 19 | 18 | pm5.32d | |- ( P =/= 1 -> ( ( P e. NN /\ { n e. NN | n || P } ~~ 2o ) <-> ( P e. NN /\ { n e. NN | n || P } C_ { 1 , P } ) ) ) |
| 20 | 7 19 | bitrid | |- ( P =/= 1 -> ( P e. Prime <-> ( P e. NN /\ { n e. NN | n || P } C_ { 1 , P } ) ) ) |
| 21 | 20 | pm5.32ri | |- ( ( P e. Prime /\ P =/= 1 ) <-> ( ( P e. NN /\ { n e. NN | n || P } C_ { 1 , P } ) /\ P =/= 1 ) ) |
| 22 | ancom | |- ( ( ( P e. NN /\ { n e. NN | n || P } C_ { 1 , P } ) /\ P =/= 1 ) <-> ( P =/= 1 /\ ( P e. NN /\ { n e. NN | n || P } C_ { 1 , P } ) ) ) |
|
| 23 | anass | |- ( ( ( P =/= 1 /\ P e. NN ) /\ { n e. NN | n || P } C_ { 1 , P } ) <-> ( P =/= 1 /\ ( P e. NN /\ { n e. NN | n || P } C_ { 1 , P } ) ) ) |
|
| 24 | 22 23 | bitr4i | |- ( ( ( P e. NN /\ { n e. NN | n || P } C_ { 1 , P } ) /\ P =/= 1 ) <-> ( ( P =/= 1 /\ P e. NN ) /\ { n e. NN | n || P } C_ { 1 , P } ) ) |
| 25 | ancom | |- ( ( P =/= 1 /\ P e. NN ) <-> ( P e. NN /\ P =/= 1 ) ) |
|
| 26 | eluz2b3 | |- ( P e. ( ZZ>= ` 2 ) <-> ( P e. NN /\ P =/= 1 ) ) |
|
| 27 | 25 26 | bitr4i | |- ( ( P =/= 1 /\ P e. NN ) <-> P e. ( ZZ>= ` 2 ) ) |
| 28 | 27 | anbi1i | |- ( ( ( P =/= 1 /\ P e. NN ) /\ { n e. NN | n || P } C_ { 1 , P } ) <-> ( P e. ( ZZ>= ` 2 ) /\ { n e. NN | n || P } C_ { 1 , P } ) ) |
| 29 | df-ss | |- ( { n e. NN | n || P } C_ { 1 , P } <-> A. z ( z e. { n e. NN | n || P } -> z e. { 1 , P } ) ) |
|
| 30 | breq1 | |- ( n = z -> ( n || P <-> z || P ) ) |
|
| 31 | 30 | elrab | |- ( z e. { n e. NN | n || P } <-> ( z e. NN /\ z || P ) ) |
| 32 | vex | |- z e. _V |
|
| 33 | 32 | elpr | |- ( z e. { 1 , P } <-> ( z = 1 \/ z = P ) ) |
| 34 | 31 33 | imbi12i | |- ( ( z e. { n e. NN | n || P } -> z e. { 1 , P } ) <-> ( ( z e. NN /\ z || P ) -> ( z = 1 \/ z = P ) ) ) |
| 35 | impexp | |- ( ( ( z e. NN /\ z || P ) -> ( z = 1 \/ z = P ) ) <-> ( z e. NN -> ( z || P -> ( z = 1 \/ z = P ) ) ) ) |
|
| 36 | 34 35 | bitri | |- ( ( z e. { n e. NN | n || P } -> z e. { 1 , P } ) <-> ( z e. NN -> ( z || P -> ( z = 1 \/ z = P ) ) ) ) |
| 37 | 36 | albii | |- ( A. z ( z e. { n e. NN | n || P } -> z e. { 1 , P } ) <-> A. z ( z e. NN -> ( z || P -> ( z = 1 \/ z = P ) ) ) ) |
| 38 | df-ral | |- ( A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) <-> A. z ( z e. NN -> ( z || P -> ( z = 1 \/ z = P ) ) ) ) |
|
| 39 | 37 38 | bitr4i | |- ( A. z ( z e. { n e. NN | n || P } -> z e. { 1 , P } ) <-> A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) ) |
| 40 | 29 39 | bitri | |- ( { n e. NN | n || P } C_ { 1 , P } <-> A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) ) |
| 41 | 40 | anbi2i | |- ( ( P e. ( ZZ>= ` 2 ) /\ { n e. NN | n || P } C_ { 1 , P } ) <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) ) ) |
| 42 | 24 28 41 | 3bitri | |- ( ( ( P e. NN /\ { n e. NN | n || P } C_ { 1 , P } ) /\ P =/= 1 ) <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) ) ) |
| 43 | 6 21 42 | 3bitri | |- ( P e. Prime <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) ) ) |