This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the pairing functor. (Contributed by Mario Carneiro, 12-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prfval.k | |- P = ( F pairF G ) |
|
| prfval.b | |- B = ( Base ` C ) |
||
| prfval.h | |- H = ( Hom ` C ) |
||
| prfval.c | |- ( ph -> F e. ( C Func D ) ) |
||
| prfval.d | |- ( ph -> G e. ( C Func E ) ) |
||
| Assertion | prfval | |- ( ph -> P = <. ( x e. B |-> <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) , ( x e. B , y e. B |-> ( h e. ( x H y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prfval.k | |- P = ( F pairF G ) |
|
| 2 | prfval.b | |- B = ( Base ` C ) |
|
| 3 | prfval.h | |- H = ( Hom ` C ) |
|
| 4 | prfval.c | |- ( ph -> F e. ( C Func D ) ) |
|
| 5 | prfval.d | |- ( ph -> G e. ( C Func E ) ) |
|
| 6 | df-prf | |- pairF = ( f e. _V , g e. _V |-> [_ dom ( 1st ` f ) / b ]_ <. ( x e. b |-> <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ) , ( x e. b , y e. b |-> ( h e. dom ( x ( 2nd ` f ) y ) |-> <. ( ( x ( 2nd ` f ) y ) ` h ) , ( ( x ( 2nd ` g ) y ) ` h ) >. ) ) >. ) |
|
| 7 | 6 | a1i | |- ( ph -> pairF = ( f e. _V , g e. _V |-> [_ dom ( 1st ` f ) / b ]_ <. ( x e. b |-> <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ) , ( x e. b , y e. b |-> ( h e. dom ( x ( 2nd ` f ) y ) |-> <. ( ( x ( 2nd ` f ) y ) ` h ) , ( ( x ( 2nd ` g ) y ) ` h ) >. ) ) >. ) ) |
| 8 | fvex | |- ( 1st ` f ) e. _V |
|
| 9 | 8 | dmex | |- dom ( 1st ` f ) e. _V |
| 10 | 9 | a1i | |- ( ( ph /\ ( f = F /\ g = G ) ) -> dom ( 1st ` f ) e. _V ) |
| 11 | simprl | |- ( ( ph /\ ( f = F /\ g = G ) ) -> f = F ) |
|
| 12 | 11 | fveq2d | |- ( ( ph /\ ( f = F /\ g = G ) ) -> ( 1st ` f ) = ( 1st ` F ) ) |
| 13 | 12 | dmeqd | |- ( ( ph /\ ( f = F /\ g = G ) ) -> dom ( 1st ` f ) = dom ( 1st ` F ) ) |
| 14 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 15 | relfunc | |- Rel ( C Func D ) |
|
| 16 | 1st2ndbr | |- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
|
| 17 | 15 4 16 | sylancr | |- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 18 | 2 14 17 | funcf1 | |- ( ph -> ( 1st ` F ) : B --> ( Base ` D ) ) |
| 19 | 18 | fdmd | |- ( ph -> dom ( 1st ` F ) = B ) |
| 20 | 19 | adantr | |- ( ( ph /\ ( f = F /\ g = G ) ) -> dom ( 1st ` F ) = B ) |
| 21 | 13 20 | eqtrd | |- ( ( ph /\ ( f = F /\ g = G ) ) -> dom ( 1st ` f ) = B ) |
| 22 | simpr | |- ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) -> b = B ) |
|
| 23 | simplrl | |- ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) -> f = F ) |
|
| 24 | 23 | fveq2d | |- ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) -> ( 1st ` f ) = ( 1st ` F ) ) |
| 25 | 24 | fveq1d | |- ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) -> ( ( 1st ` f ) ` x ) = ( ( 1st ` F ) ` x ) ) |
| 26 | simplrr | |- ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) -> g = G ) |
|
| 27 | 26 | fveq2d | |- ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) -> ( 1st ` g ) = ( 1st ` G ) ) |
| 28 | 27 | fveq1d | |- ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) -> ( ( 1st ` g ) ` x ) = ( ( 1st ` G ) ` x ) ) |
| 29 | 25 28 | opeq12d | |- ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) -> <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. = <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) |
| 30 | 22 29 | mpteq12dv | |- ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) -> ( x e. b |-> <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ) = ( x e. B |-> <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) ) |
| 31 | eqidd | |- ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) -> ( h e. dom ( x ( 2nd ` f ) y ) |-> <. ( ( x ( 2nd ` f ) y ) ` h ) , ( ( x ( 2nd ` g ) y ) ` h ) >. ) = ( h e. dom ( x ( 2nd ` f ) y ) |-> <. ( ( x ( 2nd ` f ) y ) ` h ) , ( ( x ( 2nd ` g ) y ) ` h ) >. ) ) |
|
| 32 | 22 22 31 | mpoeq123dv | |- ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) -> ( x e. b , y e. b |-> ( h e. dom ( x ( 2nd ` f ) y ) |-> <. ( ( x ( 2nd ` f ) y ) ` h ) , ( ( x ( 2nd ` g ) y ) ` h ) >. ) ) = ( x e. B , y e. B |-> ( h e. dom ( x ( 2nd ` f ) y ) |-> <. ( ( x ( 2nd ` f ) y ) ` h ) , ( ( x ( 2nd ` g ) y ) ` h ) >. ) ) ) |
| 33 | 23 | ad2antrr | |- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> f = F ) |
| 34 | 33 | fveq2d | |- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> ( 2nd ` f ) = ( 2nd ` F ) ) |
| 35 | 34 | oveqd | |- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> ( x ( 2nd ` f ) y ) = ( x ( 2nd ` F ) y ) ) |
| 36 | 35 | dmeqd | |- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> dom ( x ( 2nd ` f ) y ) = dom ( x ( 2nd ` F ) y ) ) |
| 37 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 38 | 17 | ad4antr | |- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 39 | simplr | |- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> x e. B ) |
|
| 40 | simpr | |- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> y e. B ) |
|
| 41 | 2 3 37 38 39 40 | funcf2 | |- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> ( x ( 2nd ` F ) y ) : ( x H y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
| 42 | 41 | fdmd | |- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> dom ( x ( 2nd ` F ) y ) = ( x H y ) ) |
| 43 | 36 42 | eqtrd | |- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> dom ( x ( 2nd ` f ) y ) = ( x H y ) ) |
| 44 | 35 | fveq1d | |- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> ( ( x ( 2nd ` f ) y ) ` h ) = ( ( x ( 2nd ` F ) y ) ` h ) ) |
| 45 | 26 | ad2antrr | |- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> g = G ) |
| 46 | 45 | fveq2d | |- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> ( 2nd ` g ) = ( 2nd ` G ) ) |
| 47 | 46 | oveqd | |- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> ( x ( 2nd ` g ) y ) = ( x ( 2nd ` G ) y ) ) |
| 48 | 47 | fveq1d | |- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> ( ( x ( 2nd ` g ) y ) ` h ) = ( ( x ( 2nd ` G ) y ) ` h ) ) |
| 49 | 44 48 | opeq12d | |- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> <. ( ( x ( 2nd ` f ) y ) ` h ) , ( ( x ( 2nd ` g ) y ) ` h ) >. = <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) |
| 50 | 43 49 | mpteq12dv | |- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> ( h e. dom ( x ( 2nd ` f ) y ) |-> <. ( ( x ( 2nd ` f ) y ) ` h ) , ( ( x ( 2nd ` g ) y ) ` h ) >. ) = ( h e. ( x H y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) |
| 51 | 50 | 3impa | |- ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B /\ y e. B ) -> ( h e. dom ( x ( 2nd ` f ) y ) |-> <. ( ( x ( 2nd ` f ) y ) ` h ) , ( ( x ( 2nd ` g ) y ) ` h ) >. ) = ( h e. ( x H y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) |
| 52 | 51 | mpoeq3dva | |- ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) -> ( x e. B , y e. B |-> ( h e. dom ( x ( 2nd ` f ) y ) |-> <. ( ( x ( 2nd ` f ) y ) ` h ) , ( ( x ( 2nd ` g ) y ) ` h ) >. ) ) = ( x e. B , y e. B |-> ( h e. ( x H y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) ) |
| 53 | 32 52 | eqtrd | |- ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) -> ( x e. b , y e. b |-> ( h e. dom ( x ( 2nd ` f ) y ) |-> <. ( ( x ( 2nd ` f ) y ) ` h ) , ( ( x ( 2nd ` g ) y ) ` h ) >. ) ) = ( x e. B , y e. B |-> ( h e. ( x H y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) ) |
| 54 | 30 53 | opeq12d | |- ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) -> <. ( x e. b |-> <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ) , ( x e. b , y e. b |-> ( h e. dom ( x ( 2nd ` f ) y ) |-> <. ( ( x ( 2nd ` f ) y ) ` h ) , ( ( x ( 2nd ` g ) y ) ` h ) >. ) ) >. = <. ( x e. B |-> <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) , ( x e. B , y e. B |-> ( h e. ( x H y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) >. ) |
| 55 | 10 21 54 | csbied2 | |- ( ( ph /\ ( f = F /\ g = G ) ) -> [_ dom ( 1st ` f ) / b ]_ <. ( x e. b |-> <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ) , ( x e. b , y e. b |-> ( h e. dom ( x ( 2nd ` f ) y ) |-> <. ( ( x ( 2nd ` f ) y ) ` h ) , ( ( x ( 2nd ` g ) y ) ` h ) >. ) ) >. = <. ( x e. B |-> <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) , ( x e. B , y e. B |-> ( h e. ( x H y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) >. ) |
| 56 | 4 | elexd | |- ( ph -> F e. _V ) |
| 57 | 5 | elexd | |- ( ph -> G e. _V ) |
| 58 | opex | |- <. ( x e. B |-> <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) , ( x e. B , y e. B |-> ( h e. ( x H y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) >. e. _V |
|
| 59 | 58 | a1i | |- ( ph -> <. ( x e. B |-> <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) , ( x e. B , y e. B |-> ( h e. ( x H y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) >. e. _V ) |
| 60 | 7 55 56 57 59 | ovmpod | |- ( ph -> ( F pairF G ) = <. ( x e. B |-> <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) , ( x e. B , y e. B |-> ( h e. ( x H y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) >. ) |
| 61 | 1 60 | eqtrid | |- ( ph -> P = <. ( x e. B |-> <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) , ( x e. B , y e. B |-> ( h e. ( x H y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) >. ) |