This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation of pairing with first projection. (Contributed by Mario Carneiro, 12-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prf1st.p | |- P = ( F pairF G ) |
|
| prf1st.c | |- ( ph -> F e. ( C Func D ) ) |
||
| prf1st.d | |- ( ph -> G e. ( C Func E ) ) |
||
| Assertion | prf1st | |- ( ph -> ( ( D 1stF E ) o.func P ) = F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prf1st.p | |- P = ( F pairF G ) |
|
| 2 | prf1st.c | |- ( ph -> F e. ( C Func D ) ) |
|
| 3 | prf1st.d | |- ( ph -> G e. ( C Func E ) ) |
|
| 4 | eqid | |- ( D Xc. E ) = ( D Xc. E ) |
|
| 5 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 6 | eqid | |- ( Base ` E ) = ( Base ` E ) |
|
| 7 | 4 5 6 | xpcbas | |- ( ( Base ` D ) X. ( Base ` E ) ) = ( Base ` ( D Xc. E ) ) |
| 8 | eqid | |- ( Hom ` ( D Xc. E ) ) = ( Hom ` ( D Xc. E ) ) |
|
| 9 | funcrcl | |- ( F e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
|
| 10 | 2 9 | syl | |- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
| 11 | 10 | simprd | |- ( ph -> D e. Cat ) |
| 12 | 11 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> D e. Cat ) |
| 13 | funcrcl | |- ( G e. ( C Func E ) -> ( C e. Cat /\ E e. Cat ) ) |
|
| 14 | 3 13 | syl | |- ( ph -> ( C e. Cat /\ E e. Cat ) ) |
| 15 | 14 | simprd | |- ( ph -> E e. Cat ) |
| 16 | 15 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> E e. Cat ) |
| 17 | eqid | |- ( D 1stF E ) = ( D 1stF E ) |
|
| 18 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 19 | relfunc | |- Rel ( C Func D ) |
|
| 20 | 1st2ndbr | |- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
|
| 21 | 19 2 20 | sylancr | |- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 22 | 18 5 21 | funcf1 | |- ( ph -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
| 23 | 22 | ffvelcdmda | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
| 24 | relfunc | |- Rel ( C Func E ) |
|
| 25 | 1st2ndbr | |- ( ( Rel ( C Func E ) /\ G e. ( C Func E ) ) -> ( 1st ` G ) ( C Func E ) ( 2nd ` G ) ) |
|
| 26 | 24 3 25 | sylancr | |- ( ph -> ( 1st ` G ) ( C Func E ) ( 2nd ` G ) ) |
| 27 | 18 6 26 | funcf1 | |- ( ph -> ( 1st ` G ) : ( Base ` C ) --> ( Base ` E ) ) |
| 28 | 27 | ffvelcdmda | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` G ) ` x ) e. ( Base ` E ) ) |
| 29 | 23 28 | opelxpd | |- ( ( ph /\ x e. ( Base ` C ) ) -> <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. e. ( ( Base ` D ) X. ( Base ` E ) ) ) |
| 30 | 4 7 8 12 16 17 29 | 1stf1 | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` ( D 1stF E ) ) ` <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) = ( 1st ` <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) ) |
| 31 | fvex | |- ( ( 1st ` F ) ` x ) e. _V |
|
| 32 | fvex | |- ( ( 1st ` G ) ` x ) e. _V |
|
| 33 | 31 32 | op1st | |- ( 1st ` <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) = ( ( 1st ` F ) ` x ) |
| 34 | 30 33 | eqtrdi | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` ( D 1stF E ) ) ` <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) = ( ( 1st ` F ) ` x ) ) |
| 35 | 34 | mpteq2dva | |- ( ph -> ( x e. ( Base ` C ) |-> ( ( 1st ` ( D 1stF E ) ) ` <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) ) = ( x e. ( Base ` C ) |-> ( ( 1st ` F ) ` x ) ) ) |
| 36 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 37 | 1 18 36 2 3 | prfval | |- ( ph -> P = <. ( x e. ( Base ` C ) |-> <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( h e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) >. ) |
| 38 | fvex | |- ( Base ` C ) e. _V |
|
| 39 | 38 | mptex | |- ( x e. ( Base ` C ) |-> <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) e. _V |
| 40 | 38 38 | mpoex | |- ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( h e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) e. _V |
| 41 | 39 40 | op1std | |- ( P = <. ( x e. ( Base ` C ) |-> <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( h e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) >. -> ( 1st ` P ) = ( x e. ( Base ` C ) |-> <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) ) |
| 42 | 37 41 | syl | |- ( ph -> ( 1st ` P ) = ( x e. ( Base ` C ) |-> <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) ) |
| 43 | relfunc | |- Rel ( ( D Xc. E ) Func D ) |
|
| 44 | 4 11 15 17 | 1stfcl | |- ( ph -> ( D 1stF E ) e. ( ( D Xc. E ) Func D ) ) |
| 45 | 1st2ndbr | |- ( ( Rel ( ( D Xc. E ) Func D ) /\ ( D 1stF E ) e. ( ( D Xc. E ) Func D ) ) -> ( 1st ` ( D 1stF E ) ) ( ( D Xc. E ) Func D ) ( 2nd ` ( D 1stF E ) ) ) |
|
| 46 | 43 44 45 | sylancr | |- ( ph -> ( 1st ` ( D 1stF E ) ) ( ( D Xc. E ) Func D ) ( 2nd ` ( D 1stF E ) ) ) |
| 47 | 7 5 46 | funcf1 | |- ( ph -> ( 1st ` ( D 1stF E ) ) : ( ( Base ` D ) X. ( Base ` E ) ) --> ( Base ` D ) ) |
| 48 | 47 | feqmptd | |- ( ph -> ( 1st ` ( D 1stF E ) ) = ( u e. ( ( Base ` D ) X. ( Base ` E ) ) |-> ( ( 1st ` ( D 1stF E ) ) ` u ) ) ) |
| 49 | fveq2 | |- ( u = <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. -> ( ( 1st ` ( D 1stF E ) ) ` u ) = ( ( 1st ` ( D 1stF E ) ) ` <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) ) |
|
| 50 | 29 42 48 49 | fmptco | |- ( ph -> ( ( 1st ` ( D 1stF E ) ) o. ( 1st ` P ) ) = ( x e. ( Base ` C ) |-> ( ( 1st ` ( D 1stF E ) ) ` <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) ) ) |
| 51 | 22 | feqmptd | |- ( ph -> ( 1st ` F ) = ( x e. ( Base ` C ) |-> ( ( 1st ` F ) ` x ) ) ) |
| 52 | 35 50 51 | 3eqtr4d | |- ( ph -> ( ( 1st ` ( D 1stF E ) ) o. ( 1st ` P ) ) = ( 1st ` F ) ) |
| 53 | 11 | ad2antrr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> D e. Cat ) |
| 54 | 15 | ad2antrr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> E e. Cat ) |
| 55 | relfunc | |- Rel ( C Func ( D Xc. E ) ) |
|
| 56 | 1 4 2 3 | prfcl | |- ( ph -> P e. ( C Func ( D Xc. E ) ) ) |
| 57 | 1st2ndbr | |- ( ( Rel ( C Func ( D Xc. E ) ) /\ P e. ( C Func ( D Xc. E ) ) ) -> ( 1st ` P ) ( C Func ( D Xc. E ) ) ( 2nd ` P ) ) |
|
| 58 | 55 56 57 | sylancr | |- ( ph -> ( 1st ` P ) ( C Func ( D Xc. E ) ) ( 2nd ` P ) ) |
| 59 | 18 7 58 | funcf1 | |- ( ph -> ( 1st ` P ) : ( Base ` C ) --> ( ( Base ` D ) X. ( Base ` E ) ) ) |
| 60 | 59 | ffvelcdmda | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` P ) ` x ) e. ( ( Base ` D ) X. ( Base ` E ) ) ) |
| 61 | 60 | adantrr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` P ) ` x ) e. ( ( Base ` D ) X. ( Base ` E ) ) ) |
| 62 | 61 | adantr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( 1st ` P ) ` x ) e. ( ( Base ` D ) X. ( Base ` E ) ) ) |
| 63 | 59 | ffvelcdmda | |- ( ( ph /\ y e. ( Base ` C ) ) -> ( ( 1st ` P ) ` y ) e. ( ( Base ` D ) X. ( Base ` E ) ) ) |
| 64 | 63 | adantrl | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` P ) ` y ) e. ( ( Base ` D ) X. ( Base ` E ) ) ) |
| 65 | 64 | adantr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( 1st ` P ) ` y ) e. ( ( Base ` D ) X. ( Base ` E ) ) ) |
| 66 | 4 7 8 53 54 17 62 65 | 1stf2 | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( ( 1st ` P ) ` x ) ( 2nd ` ( D 1stF E ) ) ( ( 1st ` P ) ` y ) ) = ( 1st |` ( ( ( 1st ` P ) ` x ) ( Hom ` ( D Xc. E ) ) ( ( 1st ` P ) ` y ) ) ) ) |
| 67 | 66 | fveq1d | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( ( ( 1st ` P ) ` x ) ( 2nd ` ( D 1stF E ) ) ( ( 1st ` P ) ` y ) ) ` ( ( x ( 2nd ` P ) y ) ` f ) ) = ( ( 1st |` ( ( ( 1st ` P ) ` x ) ( Hom ` ( D Xc. E ) ) ( ( 1st ` P ) ` y ) ) ) ` ( ( x ( 2nd ` P ) y ) ` f ) ) ) |
| 68 | 58 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` P ) ( C Func ( D Xc. E ) ) ( 2nd ` P ) ) |
| 69 | simprl | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) |
|
| 70 | simprr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
|
| 71 | 18 36 8 68 69 70 | funcf2 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` P ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` P ) ` x ) ( Hom ` ( D Xc. E ) ) ( ( 1st ` P ) ` y ) ) ) |
| 72 | 71 | ffvelcdmda | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` P ) y ) ` f ) e. ( ( ( 1st ` P ) ` x ) ( Hom ` ( D Xc. E ) ) ( ( 1st ` P ) ` y ) ) ) |
| 73 | 72 | fvresd | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( 1st |` ( ( ( 1st ` P ) ` x ) ( Hom ` ( D Xc. E ) ) ( ( 1st ` P ) ` y ) ) ) ` ( ( x ( 2nd ` P ) y ) ` f ) ) = ( 1st ` ( ( x ( 2nd ` P ) y ) ` f ) ) ) |
| 74 | 2 | ad2antrr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> F e. ( C Func D ) ) |
| 75 | 3 | ad2antrr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> G e. ( C Func E ) ) |
| 76 | 69 | adantr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> x e. ( Base ` C ) ) |
| 77 | 70 | adantr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> y e. ( Base ` C ) ) |
| 78 | simpr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> f e. ( x ( Hom ` C ) y ) ) |
|
| 79 | 1 18 36 74 75 76 77 78 | prf2 | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` P ) y ) ` f ) = <. ( ( x ( 2nd ` F ) y ) ` f ) , ( ( x ( 2nd ` G ) y ) ` f ) >. ) |
| 80 | 79 | fveq2d | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( 1st ` ( ( x ( 2nd ` P ) y ) ` f ) ) = ( 1st ` <. ( ( x ( 2nd ` F ) y ) ` f ) , ( ( x ( 2nd ` G ) y ) ` f ) >. ) ) |
| 81 | fvex | |- ( ( x ( 2nd ` F ) y ) ` f ) e. _V |
|
| 82 | fvex | |- ( ( x ( 2nd ` G ) y ) ` f ) e. _V |
|
| 83 | 81 82 | op1st | |- ( 1st ` <. ( ( x ( 2nd ` F ) y ) ` f ) , ( ( x ( 2nd ` G ) y ) ` f ) >. ) = ( ( x ( 2nd ` F ) y ) ` f ) |
| 84 | 80 83 | eqtrdi | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( 1st ` ( ( x ( 2nd ` P ) y ) ` f ) ) = ( ( x ( 2nd ` F ) y ) ` f ) ) |
| 85 | 67 73 84 | 3eqtrd | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( ( ( 1st ` P ) ` x ) ( 2nd ` ( D 1stF E ) ) ( ( 1st ` P ) ` y ) ) ` ( ( x ( 2nd ` P ) y ) ` f ) ) = ( ( x ( 2nd ` F ) y ) ` f ) ) |
| 86 | 85 | mpteq2dva | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( f e. ( x ( Hom ` C ) y ) |-> ( ( ( ( 1st ` P ) ` x ) ( 2nd ` ( D 1stF E ) ) ( ( 1st ` P ) ` y ) ) ` ( ( x ( 2nd ` P ) y ) ` f ) ) ) = ( f e. ( x ( Hom ` C ) y ) |-> ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
| 87 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 88 | 46 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` ( D 1stF E ) ) ( ( D Xc. E ) Func D ) ( 2nd ` ( D 1stF E ) ) ) |
| 89 | 7 8 87 88 61 64 | funcf2 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( 1st ` P ) ` x ) ( 2nd ` ( D 1stF E ) ) ( ( 1st ` P ) ` y ) ) : ( ( ( 1st ` P ) ` x ) ( Hom ` ( D Xc. E ) ) ( ( 1st ` P ) ` y ) ) --> ( ( ( 1st ` ( D 1stF E ) ) ` ( ( 1st ` P ) ` x ) ) ( Hom ` D ) ( ( 1st ` ( D 1stF E ) ) ` ( ( 1st ` P ) ` y ) ) ) ) |
| 90 | fcompt | |- ( ( ( ( ( 1st ` P ) ` x ) ( 2nd ` ( D 1stF E ) ) ( ( 1st ` P ) ` y ) ) : ( ( ( 1st ` P ) ` x ) ( Hom ` ( D Xc. E ) ) ( ( 1st ` P ) ` y ) ) --> ( ( ( 1st ` ( D 1stF E ) ) ` ( ( 1st ` P ) ` x ) ) ( Hom ` D ) ( ( 1st ` ( D 1stF E ) ) ` ( ( 1st ` P ) ` y ) ) ) /\ ( x ( 2nd ` P ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` P ) ` x ) ( Hom ` ( D Xc. E ) ) ( ( 1st ` P ) ` y ) ) ) -> ( ( ( ( 1st ` P ) ` x ) ( 2nd ` ( D 1stF E ) ) ( ( 1st ` P ) ` y ) ) o. ( x ( 2nd ` P ) y ) ) = ( f e. ( x ( Hom ` C ) y ) |-> ( ( ( ( 1st ` P ) ` x ) ( 2nd ` ( D 1stF E ) ) ( ( 1st ` P ) ` y ) ) ` ( ( x ( 2nd ` P ) y ) ` f ) ) ) ) |
|
| 91 | 89 71 90 | syl2anc | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( ( 1st ` P ) ` x ) ( 2nd ` ( D 1stF E ) ) ( ( 1st ` P ) ` y ) ) o. ( x ( 2nd ` P ) y ) ) = ( f e. ( x ( Hom ` C ) y ) |-> ( ( ( ( 1st ` P ) ` x ) ( 2nd ` ( D 1stF E ) ) ( ( 1st ` P ) ` y ) ) ` ( ( x ( 2nd ` P ) y ) ` f ) ) ) ) |
| 92 | 21 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 93 | 18 36 87 92 69 70 | funcf2 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
| 94 | 93 | feqmptd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` F ) y ) = ( f e. ( x ( Hom ` C ) y ) |-> ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
| 95 | 86 91 94 | 3eqtr4d | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( ( 1st ` P ) ` x ) ( 2nd ` ( D 1stF E ) ) ( ( 1st ` P ) ` y ) ) o. ( x ( 2nd ` P ) y ) ) = ( x ( 2nd ` F ) y ) ) |
| 96 | 95 | 3impb | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( ( ( 1st ` P ) ` x ) ( 2nd ` ( D 1stF E ) ) ( ( 1st ` P ) ` y ) ) o. ( x ( 2nd ` P ) y ) ) = ( x ( 2nd ` F ) y ) ) |
| 97 | 96 | mpoeq3dva | |- ( ph -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` P ) ` x ) ( 2nd ` ( D 1stF E ) ) ( ( 1st ` P ) ` y ) ) o. ( x ( 2nd ` P ) y ) ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` F ) y ) ) ) |
| 98 | 18 21 | funcfn2 | |- ( ph -> ( 2nd ` F ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 99 | fnov | |- ( ( 2nd ` F ) Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> ( 2nd ` F ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` F ) y ) ) ) |
|
| 100 | 98 99 | sylib | |- ( ph -> ( 2nd ` F ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` F ) y ) ) ) |
| 101 | 97 100 | eqtr4d | |- ( ph -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` P ) ` x ) ( 2nd ` ( D 1stF E ) ) ( ( 1st ` P ) ` y ) ) o. ( x ( 2nd ` P ) y ) ) ) = ( 2nd ` F ) ) |
| 102 | 52 101 | opeq12d | |- ( ph -> <. ( ( 1st ` ( D 1stF E ) ) o. ( 1st ` P ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` P ) ` x ) ( 2nd ` ( D 1stF E ) ) ( ( 1st ` P ) ` y ) ) o. ( x ( 2nd ` P ) y ) ) ) >. = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 103 | 18 56 44 | cofuval | |- ( ph -> ( ( D 1stF E ) o.func P ) = <. ( ( 1st ` ( D 1stF E ) ) o. ( 1st ` P ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` P ) ` x ) ( 2nd ` ( D 1stF E ) ) ( ( 1st ` P ) ` y ) ) o. ( x ( 2nd ` P ) y ) ) ) >. ) |
| 104 | 1st2nd | |- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
|
| 105 | 19 2 104 | sylancr | |- ( ph -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 106 | 102 103 105 | 3eqtr4d | |- ( ph -> ( ( D 1stF E ) o.func P ) = F ) |