This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any element of a direct subspace sum can be decomposed into projections onto the left and right factors. (Contributed by Mario Carneiro, 15-Oct-2015) (Revised by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pj1eu.a | |- .+ = ( +g ` G ) |
|
| pj1eu.s | |- .(+) = ( LSSum ` G ) |
||
| pj1eu.o | |- .0. = ( 0g ` G ) |
||
| pj1eu.z | |- Z = ( Cntz ` G ) |
||
| pj1eu.2 | |- ( ph -> T e. ( SubGrp ` G ) ) |
||
| pj1eu.3 | |- ( ph -> U e. ( SubGrp ` G ) ) |
||
| pj1eu.4 | |- ( ph -> ( T i^i U ) = { .0. } ) |
||
| pj1eu.5 | |- ( ph -> T C_ ( Z ` U ) ) |
||
| pj1f.p | |- P = ( proj1 ` G ) |
||
| Assertion | pj1id | |- ( ( ph /\ X e. ( T .(+) U ) ) -> X = ( ( ( T P U ) ` X ) .+ ( ( U P T ) ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pj1eu.a | |- .+ = ( +g ` G ) |
|
| 2 | pj1eu.s | |- .(+) = ( LSSum ` G ) |
|
| 3 | pj1eu.o | |- .0. = ( 0g ` G ) |
|
| 4 | pj1eu.z | |- Z = ( Cntz ` G ) |
|
| 5 | pj1eu.2 | |- ( ph -> T e. ( SubGrp ` G ) ) |
|
| 6 | pj1eu.3 | |- ( ph -> U e. ( SubGrp ` G ) ) |
|
| 7 | pj1eu.4 | |- ( ph -> ( T i^i U ) = { .0. } ) |
|
| 8 | pj1eu.5 | |- ( ph -> T C_ ( Z ` U ) ) |
|
| 9 | pj1f.p | |- P = ( proj1 ` G ) |
|
| 10 | subgrcl | |- ( T e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 11 | 5 10 | syl | |- ( ph -> G e. Grp ) |
| 12 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 13 | 12 | subgss | |- ( T e. ( SubGrp ` G ) -> T C_ ( Base ` G ) ) |
| 14 | 5 13 | syl | |- ( ph -> T C_ ( Base ` G ) ) |
| 15 | 12 | subgss | |- ( U e. ( SubGrp ` G ) -> U C_ ( Base ` G ) ) |
| 16 | 6 15 | syl | |- ( ph -> U C_ ( Base ` G ) ) |
| 17 | 11 14 16 | 3jca | |- ( ph -> ( G e. Grp /\ T C_ ( Base ` G ) /\ U C_ ( Base ` G ) ) ) |
| 18 | 12 1 2 9 | pj1val | |- ( ( ( G e. Grp /\ T C_ ( Base ` G ) /\ U C_ ( Base ` G ) ) /\ X e. ( T .(+) U ) ) -> ( ( T P U ) ` X ) = ( iota_ x e. T E. y e. U X = ( x .+ y ) ) ) |
| 19 | 17 18 | sylan | |- ( ( ph /\ X e. ( T .(+) U ) ) -> ( ( T P U ) ` X ) = ( iota_ x e. T E. y e. U X = ( x .+ y ) ) ) |
| 20 | 1 2 3 4 5 6 7 8 | pj1eu | |- ( ( ph /\ X e. ( T .(+) U ) ) -> E! x e. T E. y e. U X = ( x .+ y ) ) |
| 21 | riotacl2 | |- ( E! x e. T E. y e. U X = ( x .+ y ) -> ( iota_ x e. T E. y e. U X = ( x .+ y ) ) e. { x e. T | E. y e. U X = ( x .+ y ) } ) |
|
| 22 | 20 21 | syl | |- ( ( ph /\ X e. ( T .(+) U ) ) -> ( iota_ x e. T E. y e. U X = ( x .+ y ) ) e. { x e. T | E. y e. U X = ( x .+ y ) } ) |
| 23 | 19 22 | eqeltrd | |- ( ( ph /\ X e. ( T .(+) U ) ) -> ( ( T P U ) ` X ) e. { x e. T | E. y e. U X = ( x .+ y ) } ) |
| 24 | oveq1 | |- ( x = ( ( T P U ) ` X ) -> ( x .+ y ) = ( ( ( T P U ) ` X ) .+ y ) ) |
|
| 25 | 24 | eqeq2d | |- ( x = ( ( T P U ) ` X ) -> ( X = ( x .+ y ) <-> X = ( ( ( T P U ) ` X ) .+ y ) ) ) |
| 26 | 25 | rexbidv | |- ( x = ( ( T P U ) ` X ) -> ( E. y e. U X = ( x .+ y ) <-> E. y e. U X = ( ( ( T P U ) ` X ) .+ y ) ) ) |
| 27 | 26 | elrab | |- ( ( ( T P U ) ` X ) e. { x e. T | E. y e. U X = ( x .+ y ) } <-> ( ( ( T P U ) ` X ) e. T /\ E. y e. U X = ( ( ( T P U ) ` X ) .+ y ) ) ) |
| 28 | 27 | simprbi | |- ( ( ( T P U ) ` X ) e. { x e. T | E. y e. U X = ( x .+ y ) } -> E. y e. U X = ( ( ( T P U ) ` X ) .+ y ) ) |
| 29 | 23 28 | syl | |- ( ( ph /\ X e. ( T .(+) U ) ) -> E. y e. U X = ( ( ( T P U ) ` X ) .+ y ) ) |
| 30 | simprr | |- ( ( ( ph /\ X e. ( T .(+) U ) ) /\ ( y e. U /\ X = ( ( ( T P U ) ` X ) .+ y ) ) ) -> X = ( ( ( T P U ) ` X ) .+ y ) ) |
|
| 31 | 11 | ad2antrr | |- ( ( ( ph /\ X e. ( T .(+) U ) ) /\ ( y e. U /\ X = ( ( ( T P U ) ` X ) .+ y ) ) ) -> G e. Grp ) |
| 32 | 16 | ad2antrr | |- ( ( ( ph /\ X e. ( T .(+) U ) ) /\ ( y e. U /\ X = ( ( ( T P U ) ` X ) .+ y ) ) ) -> U C_ ( Base ` G ) ) |
| 33 | 14 | ad2antrr | |- ( ( ( ph /\ X e. ( T .(+) U ) ) /\ ( y e. U /\ X = ( ( ( T P U ) ` X ) .+ y ) ) ) -> T C_ ( Base ` G ) ) |
| 34 | simplr | |- ( ( ( ph /\ X e. ( T .(+) U ) ) /\ ( y e. U /\ X = ( ( ( T P U ) ` X ) .+ y ) ) ) -> X e. ( T .(+) U ) ) |
|
| 35 | 2 4 | lsmcom2 | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( T .(+) U ) = ( U .(+) T ) ) |
| 36 | 5 6 8 35 | syl3anc | |- ( ph -> ( T .(+) U ) = ( U .(+) T ) ) |
| 37 | 36 | ad2antrr | |- ( ( ( ph /\ X e. ( T .(+) U ) ) /\ ( y e. U /\ X = ( ( ( T P U ) ` X ) .+ y ) ) ) -> ( T .(+) U ) = ( U .(+) T ) ) |
| 38 | 34 37 | eleqtrd | |- ( ( ( ph /\ X e. ( T .(+) U ) ) /\ ( y e. U /\ X = ( ( ( T P U ) ` X ) .+ y ) ) ) -> X e. ( U .(+) T ) ) |
| 39 | 12 1 2 9 | pj1val | |- ( ( ( G e. Grp /\ U C_ ( Base ` G ) /\ T C_ ( Base ` G ) ) /\ X e. ( U .(+) T ) ) -> ( ( U P T ) ` X ) = ( iota_ u e. U E. v e. T X = ( u .+ v ) ) ) |
| 40 | 31 32 33 38 39 | syl31anc | |- ( ( ( ph /\ X e. ( T .(+) U ) ) /\ ( y e. U /\ X = ( ( ( T P U ) ` X ) .+ y ) ) ) -> ( ( U P T ) ` X ) = ( iota_ u e. U E. v e. T X = ( u .+ v ) ) ) |
| 41 | 1 2 3 4 5 6 7 8 9 | pj1f | |- ( ph -> ( T P U ) : ( T .(+) U ) --> T ) |
| 42 | 41 | ad2antrr | |- ( ( ( ph /\ X e. ( T .(+) U ) ) /\ ( y e. U /\ X = ( ( ( T P U ) ` X ) .+ y ) ) ) -> ( T P U ) : ( T .(+) U ) --> T ) |
| 43 | 42 34 | ffvelcdmd | |- ( ( ( ph /\ X e. ( T .(+) U ) ) /\ ( y e. U /\ X = ( ( ( T P U ) ` X ) .+ y ) ) ) -> ( ( T P U ) ` X ) e. T ) |
| 44 | 8 | ad2antrr | |- ( ( ( ph /\ X e. ( T .(+) U ) ) /\ ( y e. U /\ X = ( ( ( T P U ) ` X ) .+ y ) ) ) -> T C_ ( Z ` U ) ) |
| 45 | 44 43 | sseldd | |- ( ( ( ph /\ X e. ( T .(+) U ) ) /\ ( y e. U /\ X = ( ( ( T P U ) ` X ) .+ y ) ) ) -> ( ( T P U ) ` X ) e. ( Z ` U ) ) |
| 46 | simprl | |- ( ( ( ph /\ X e. ( T .(+) U ) ) /\ ( y e. U /\ X = ( ( ( T P U ) ` X ) .+ y ) ) ) -> y e. U ) |
|
| 47 | 1 4 | cntzi | |- ( ( ( ( T P U ) ` X ) e. ( Z ` U ) /\ y e. U ) -> ( ( ( T P U ) ` X ) .+ y ) = ( y .+ ( ( T P U ) ` X ) ) ) |
| 48 | 45 46 47 | syl2anc | |- ( ( ( ph /\ X e. ( T .(+) U ) ) /\ ( y e. U /\ X = ( ( ( T P U ) ` X ) .+ y ) ) ) -> ( ( ( T P U ) ` X ) .+ y ) = ( y .+ ( ( T P U ) ` X ) ) ) |
| 49 | 30 48 | eqtrd | |- ( ( ( ph /\ X e. ( T .(+) U ) ) /\ ( y e. U /\ X = ( ( ( T P U ) ` X ) .+ y ) ) ) -> X = ( y .+ ( ( T P U ) ` X ) ) ) |
| 50 | oveq2 | |- ( v = ( ( T P U ) ` X ) -> ( y .+ v ) = ( y .+ ( ( T P U ) ` X ) ) ) |
|
| 51 | 50 | rspceeqv | |- ( ( ( ( T P U ) ` X ) e. T /\ X = ( y .+ ( ( T P U ) ` X ) ) ) -> E. v e. T X = ( y .+ v ) ) |
| 52 | 43 49 51 | syl2anc | |- ( ( ( ph /\ X e. ( T .(+) U ) ) /\ ( y e. U /\ X = ( ( ( T P U ) ` X ) .+ y ) ) ) -> E. v e. T X = ( y .+ v ) ) |
| 53 | simpll | |- ( ( ( ph /\ X e. ( T .(+) U ) ) /\ ( y e. U /\ X = ( ( ( T P U ) ` X ) .+ y ) ) ) -> ph ) |
|
| 54 | incom | |- ( U i^i T ) = ( T i^i U ) |
|
| 55 | 54 7 | eqtrid | |- ( ph -> ( U i^i T ) = { .0. } ) |
| 56 | 4 5 6 8 | cntzrecd | |- ( ph -> U C_ ( Z ` T ) ) |
| 57 | 1 2 3 4 6 5 55 56 | pj1eu | |- ( ( ph /\ X e. ( U .(+) T ) ) -> E! u e. U E. v e. T X = ( u .+ v ) ) |
| 58 | 53 38 57 | syl2anc | |- ( ( ( ph /\ X e. ( T .(+) U ) ) /\ ( y e. U /\ X = ( ( ( T P U ) ` X ) .+ y ) ) ) -> E! u e. U E. v e. T X = ( u .+ v ) ) |
| 59 | oveq1 | |- ( u = y -> ( u .+ v ) = ( y .+ v ) ) |
|
| 60 | 59 | eqeq2d | |- ( u = y -> ( X = ( u .+ v ) <-> X = ( y .+ v ) ) ) |
| 61 | 60 | rexbidv | |- ( u = y -> ( E. v e. T X = ( u .+ v ) <-> E. v e. T X = ( y .+ v ) ) ) |
| 62 | 61 | riota2 | |- ( ( y e. U /\ E! u e. U E. v e. T X = ( u .+ v ) ) -> ( E. v e. T X = ( y .+ v ) <-> ( iota_ u e. U E. v e. T X = ( u .+ v ) ) = y ) ) |
| 63 | 46 58 62 | syl2anc | |- ( ( ( ph /\ X e. ( T .(+) U ) ) /\ ( y e. U /\ X = ( ( ( T P U ) ` X ) .+ y ) ) ) -> ( E. v e. T X = ( y .+ v ) <-> ( iota_ u e. U E. v e. T X = ( u .+ v ) ) = y ) ) |
| 64 | 52 63 | mpbid | |- ( ( ( ph /\ X e. ( T .(+) U ) ) /\ ( y e. U /\ X = ( ( ( T P U ) ` X ) .+ y ) ) ) -> ( iota_ u e. U E. v e. T X = ( u .+ v ) ) = y ) |
| 65 | 40 64 | eqtrd | |- ( ( ( ph /\ X e. ( T .(+) U ) ) /\ ( y e. U /\ X = ( ( ( T P U ) ` X ) .+ y ) ) ) -> ( ( U P T ) ` X ) = y ) |
| 66 | 65 | oveq2d | |- ( ( ( ph /\ X e. ( T .(+) U ) ) /\ ( y e. U /\ X = ( ( ( T P U ) ` X ) .+ y ) ) ) -> ( ( ( T P U ) ` X ) .+ ( ( U P T ) ` X ) ) = ( ( ( T P U ) ` X ) .+ y ) ) |
| 67 | 30 66 | eqtr4d | |- ( ( ( ph /\ X e. ( T .(+) U ) ) /\ ( y e. U /\ X = ( ( ( T P U ) ` X ) .+ y ) ) ) -> X = ( ( ( T P U ) ` X ) .+ ( ( U P T ) ` X ) ) ) |
| 68 | 29 67 | rexlimddv | |- ( ( ph /\ X e. ( T .(+) U ) ) -> X = ( ( ( T P U ) ` X ) .+ ( ( U P T ) ` X ) ) ) |