This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left projection function maps a direct subspace sum onto the left factor. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pj1eu.a | |- .+ = ( +g ` G ) |
|
| pj1eu.s | |- .(+) = ( LSSum ` G ) |
||
| pj1eu.o | |- .0. = ( 0g ` G ) |
||
| pj1eu.z | |- Z = ( Cntz ` G ) |
||
| pj1eu.2 | |- ( ph -> T e. ( SubGrp ` G ) ) |
||
| pj1eu.3 | |- ( ph -> U e. ( SubGrp ` G ) ) |
||
| pj1eu.4 | |- ( ph -> ( T i^i U ) = { .0. } ) |
||
| pj1eu.5 | |- ( ph -> T C_ ( Z ` U ) ) |
||
| pj1f.p | |- P = ( proj1 ` G ) |
||
| Assertion | pj1f | |- ( ph -> ( T P U ) : ( T .(+) U ) --> T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pj1eu.a | |- .+ = ( +g ` G ) |
|
| 2 | pj1eu.s | |- .(+) = ( LSSum ` G ) |
|
| 3 | pj1eu.o | |- .0. = ( 0g ` G ) |
|
| 4 | pj1eu.z | |- Z = ( Cntz ` G ) |
|
| 5 | pj1eu.2 | |- ( ph -> T e. ( SubGrp ` G ) ) |
|
| 6 | pj1eu.3 | |- ( ph -> U e. ( SubGrp ` G ) ) |
|
| 7 | pj1eu.4 | |- ( ph -> ( T i^i U ) = { .0. } ) |
|
| 8 | pj1eu.5 | |- ( ph -> T C_ ( Z ` U ) ) |
|
| 9 | pj1f.p | |- P = ( proj1 ` G ) |
|
| 10 | subgrcl | |- ( T e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 11 | 5 10 | syl | |- ( ph -> G e. Grp ) |
| 12 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 13 | 12 | subgss | |- ( T e. ( SubGrp ` G ) -> T C_ ( Base ` G ) ) |
| 14 | 5 13 | syl | |- ( ph -> T C_ ( Base ` G ) ) |
| 15 | 12 | subgss | |- ( U e. ( SubGrp ` G ) -> U C_ ( Base ` G ) ) |
| 16 | 6 15 | syl | |- ( ph -> U C_ ( Base ` G ) ) |
| 17 | 12 1 2 9 | pj1fval | |- ( ( G e. Grp /\ T C_ ( Base ` G ) /\ U C_ ( Base ` G ) ) -> ( T P U ) = ( z e. ( T .(+) U ) |-> ( iota_ x e. T E. y e. U z = ( x .+ y ) ) ) ) |
| 18 | 11 14 16 17 | syl3anc | |- ( ph -> ( T P U ) = ( z e. ( T .(+) U ) |-> ( iota_ x e. T E. y e. U z = ( x .+ y ) ) ) ) |
| 19 | 1 2 3 4 5 6 7 8 | pj1eu | |- ( ( ph /\ z e. ( T .(+) U ) ) -> E! x e. T E. y e. U z = ( x .+ y ) ) |
| 20 | riotacl | |- ( E! x e. T E. y e. U z = ( x .+ y ) -> ( iota_ x e. T E. y e. U z = ( x .+ y ) ) e. T ) |
|
| 21 | 19 20 | syl | |- ( ( ph /\ z e. ( T .(+) U ) ) -> ( iota_ x e. T E. y e. U z = ( x .+ y ) ) e. T ) |
| 22 | 18 21 | fmpt3d | |- ( ph -> ( T P U ) : ( T .(+) U ) --> T ) |