This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left projection function is a group homomorphism. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pj1eu.a | |- .+ = ( +g ` G ) |
|
| pj1eu.s | |- .(+) = ( LSSum ` G ) |
||
| pj1eu.o | |- .0. = ( 0g ` G ) |
||
| pj1eu.z | |- Z = ( Cntz ` G ) |
||
| pj1eu.2 | |- ( ph -> T e. ( SubGrp ` G ) ) |
||
| pj1eu.3 | |- ( ph -> U e. ( SubGrp ` G ) ) |
||
| pj1eu.4 | |- ( ph -> ( T i^i U ) = { .0. } ) |
||
| pj1eu.5 | |- ( ph -> T C_ ( Z ` U ) ) |
||
| pj1f.p | |- P = ( proj1 ` G ) |
||
| Assertion | pj1ghm2 | |- ( ph -> ( T P U ) e. ( ( G |`s ( T .(+) U ) ) GrpHom ( G |`s T ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pj1eu.a | |- .+ = ( +g ` G ) |
|
| 2 | pj1eu.s | |- .(+) = ( LSSum ` G ) |
|
| 3 | pj1eu.o | |- .0. = ( 0g ` G ) |
|
| 4 | pj1eu.z | |- Z = ( Cntz ` G ) |
|
| 5 | pj1eu.2 | |- ( ph -> T e. ( SubGrp ` G ) ) |
|
| 6 | pj1eu.3 | |- ( ph -> U e. ( SubGrp ` G ) ) |
|
| 7 | pj1eu.4 | |- ( ph -> ( T i^i U ) = { .0. } ) |
|
| 8 | pj1eu.5 | |- ( ph -> T C_ ( Z ` U ) ) |
|
| 9 | pj1f.p | |- P = ( proj1 ` G ) |
|
| 10 | 1 2 3 4 5 6 7 8 9 | pj1ghm | |- ( ph -> ( T P U ) e. ( ( G |`s ( T .(+) U ) ) GrpHom G ) ) |
| 11 | 1 2 3 4 5 6 7 8 9 | pj1f | |- ( ph -> ( T P U ) : ( T .(+) U ) --> T ) |
| 12 | 11 | frnd | |- ( ph -> ran ( T P U ) C_ T ) |
| 13 | eqid | |- ( G |`s T ) = ( G |`s T ) |
|
| 14 | 13 | resghm2b | |- ( ( T e. ( SubGrp ` G ) /\ ran ( T P U ) C_ T ) -> ( ( T P U ) e. ( ( G |`s ( T .(+) U ) ) GrpHom G ) <-> ( T P U ) e. ( ( G |`s ( T .(+) U ) ) GrpHom ( G |`s T ) ) ) ) |
| 15 | 5 12 14 | syl2anc | |- ( ph -> ( ( T P U ) e. ( ( G |`s ( T .(+) U ) ) GrpHom G ) <-> ( T P U ) e. ( ( G |`s ( T .(+) U ) ) GrpHom ( G |`s T ) ) ) ) |
| 16 | 10 15 | mpbid | |- ( ph -> ( T P U ) e. ( ( G |`s ( T .(+) U ) ) GrpHom ( G |`s T ) ) ) |