This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The right projection function maps a direct subspace sum onto the right factor. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pj1eu.a | |- .+ = ( +g ` G ) |
|
| pj1eu.s | |- .(+) = ( LSSum ` G ) |
||
| pj1eu.o | |- .0. = ( 0g ` G ) |
||
| pj1eu.z | |- Z = ( Cntz ` G ) |
||
| pj1eu.2 | |- ( ph -> T e. ( SubGrp ` G ) ) |
||
| pj1eu.3 | |- ( ph -> U e. ( SubGrp ` G ) ) |
||
| pj1eu.4 | |- ( ph -> ( T i^i U ) = { .0. } ) |
||
| pj1eu.5 | |- ( ph -> T C_ ( Z ` U ) ) |
||
| pj1f.p | |- P = ( proj1 ` G ) |
||
| Assertion | pj2f | |- ( ph -> ( U P T ) : ( T .(+) U ) --> U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pj1eu.a | |- .+ = ( +g ` G ) |
|
| 2 | pj1eu.s | |- .(+) = ( LSSum ` G ) |
|
| 3 | pj1eu.o | |- .0. = ( 0g ` G ) |
|
| 4 | pj1eu.z | |- Z = ( Cntz ` G ) |
|
| 5 | pj1eu.2 | |- ( ph -> T e. ( SubGrp ` G ) ) |
|
| 6 | pj1eu.3 | |- ( ph -> U e. ( SubGrp ` G ) ) |
|
| 7 | pj1eu.4 | |- ( ph -> ( T i^i U ) = { .0. } ) |
|
| 8 | pj1eu.5 | |- ( ph -> T C_ ( Z ` U ) ) |
|
| 9 | pj1f.p | |- P = ( proj1 ` G ) |
|
| 10 | incom | |- ( U i^i T ) = ( T i^i U ) |
|
| 11 | 10 7 | eqtrid | |- ( ph -> ( U i^i T ) = { .0. } ) |
| 12 | 4 5 6 8 | cntzrecd | |- ( ph -> U C_ ( Z ` T ) ) |
| 13 | 1 2 3 4 6 5 11 12 9 | pj1f | |- ( ph -> ( U P T ) : ( U .(+) T ) --> U ) |
| 14 | 2 4 | lsmcom2 | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( T .(+) U ) = ( U .(+) T ) ) |
| 15 | 5 6 8 14 | syl3anc | |- ( ph -> ( T .(+) U ) = ( U .(+) T ) ) |
| 16 | 15 | feq2d | |- ( ph -> ( ( U P T ) : ( T .(+) U ) --> U <-> ( U P T ) : ( U .(+) T ) --> U ) ) |
| 17 | 13 16 | mpbird | |- ( ph -> ( U P T ) : ( T .(+) U ) --> U ) |