This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any element of a direct subspace sum can be decomposed uniquely into projections onto the left and right factors. (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pj1eu.a | |- .+ = ( +g ` G ) |
|
| pj1eu.s | |- .(+) = ( LSSum ` G ) |
||
| pj1eu.o | |- .0. = ( 0g ` G ) |
||
| pj1eu.z | |- Z = ( Cntz ` G ) |
||
| pj1eu.2 | |- ( ph -> T e. ( SubGrp ` G ) ) |
||
| pj1eu.3 | |- ( ph -> U e. ( SubGrp ` G ) ) |
||
| pj1eu.4 | |- ( ph -> ( T i^i U ) = { .0. } ) |
||
| pj1eu.5 | |- ( ph -> T C_ ( Z ` U ) ) |
||
| pj1f.p | |- P = ( proj1 ` G ) |
||
| pj1eq.5 | |- ( ph -> X e. ( T .(+) U ) ) |
||
| pj1eq.6 | |- ( ph -> B e. T ) |
||
| pj1eq.7 | |- ( ph -> C e. U ) |
||
| Assertion | pj1eq | |- ( ph -> ( X = ( B .+ C ) <-> ( ( ( T P U ) ` X ) = B /\ ( ( U P T ) ` X ) = C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pj1eu.a | |- .+ = ( +g ` G ) |
|
| 2 | pj1eu.s | |- .(+) = ( LSSum ` G ) |
|
| 3 | pj1eu.o | |- .0. = ( 0g ` G ) |
|
| 4 | pj1eu.z | |- Z = ( Cntz ` G ) |
|
| 5 | pj1eu.2 | |- ( ph -> T e. ( SubGrp ` G ) ) |
|
| 6 | pj1eu.3 | |- ( ph -> U e. ( SubGrp ` G ) ) |
|
| 7 | pj1eu.4 | |- ( ph -> ( T i^i U ) = { .0. } ) |
|
| 8 | pj1eu.5 | |- ( ph -> T C_ ( Z ` U ) ) |
|
| 9 | pj1f.p | |- P = ( proj1 ` G ) |
|
| 10 | pj1eq.5 | |- ( ph -> X e. ( T .(+) U ) ) |
|
| 11 | pj1eq.6 | |- ( ph -> B e. T ) |
|
| 12 | pj1eq.7 | |- ( ph -> C e. U ) |
|
| 13 | 1 2 3 4 5 6 7 8 9 | pj1id | |- ( ( ph /\ X e. ( T .(+) U ) ) -> X = ( ( ( T P U ) ` X ) .+ ( ( U P T ) ` X ) ) ) |
| 14 | 10 13 | mpdan | |- ( ph -> X = ( ( ( T P U ) ` X ) .+ ( ( U P T ) ` X ) ) ) |
| 15 | 14 | eqeq1d | |- ( ph -> ( X = ( B .+ C ) <-> ( ( ( T P U ) ` X ) .+ ( ( U P T ) ` X ) ) = ( B .+ C ) ) ) |
| 16 | 1 2 3 4 5 6 7 8 9 | pj1f | |- ( ph -> ( T P U ) : ( T .(+) U ) --> T ) |
| 17 | 16 10 | ffvelcdmd | |- ( ph -> ( ( T P U ) ` X ) e. T ) |
| 18 | 1 2 3 4 5 6 7 8 9 | pj2f | |- ( ph -> ( U P T ) : ( T .(+) U ) --> U ) |
| 19 | 18 10 | ffvelcdmd | |- ( ph -> ( ( U P T ) ` X ) e. U ) |
| 20 | 1 3 4 5 6 7 8 17 11 19 12 | subgdisjb | |- ( ph -> ( ( ( ( T P U ) ` X ) .+ ( ( U P T ) ` X ) ) = ( B .+ C ) <-> ( ( ( T P U ) ` X ) = B /\ ( ( U P T ) ` X ) = C ) ) ) |
| 21 | 15 20 | bitrd | |- ( ph -> ( X = ( B .+ C ) <-> ( ( ( T P U ) ` X ) = B /\ ( ( U P T ) ` X ) = C ) ) ) |