This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplicative property of the prime count pre-function. Note that the primality of P is essential for this property; ( 4 pCnt 2 ) = 0 but ( 4 pCnt ( 2 x. 2 ) ) = 1 =/= 2 x. ( 4 pCnt 2 ) = 0 . Since this is needed to show uniqueness for the real prime count function (over QQ ), we don't bother to define it off the primes. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pcpremul.1 | |- S = sup ( { n e. NN0 | ( P ^ n ) || M } , RR , < ) |
|
| pcpremul.2 | |- T = sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) |
||
| pcpremul.3 | |- U = sup ( { n e. NN0 | ( P ^ n ) || ( M x. N ) } , RR , < ) |
||
| Assertion | pcpremul | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S + T ) = U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcpremul.1 | |- S = sup ( { n e. NN0 | ( P ^ n ) || M } , RR , < ) |
|
| 2 | pcpremul.2 | |- T = sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) |
|
| 3 | pcpremul.3 | |- U = sup ( { n e. NN0 | ( P ^ n ) || ( M x. N ) } , RR , < ) |
|
| 4 | prmuz2 | |- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
|
| 5 | 4 | 3ad2ant1 | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> P e. ( ZZ>= ` 2 ) ) |
| 6 | zmulcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M x. N ) e. ZZ ) |
|
| 7 | 6 | ad2ant2r | |- ( ( ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( M x. N ) e. ZZ ) |
| 8 | 7 | 3adant1 | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( M x. N ) e. ZZ ) |
| 9 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 10 | 9 | anim1i | |- ( ( M e. ZZ /\ M =/= 0 ) -> ( M e. CC /\ M =/= 0 ) ) |
| 11 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 12 | 11 | anim1i | |- ( ( N e. ZZ /\ N =/= 0 ) -> ( N e. CC /\ N =/= 0 ) ) |
| 13 | mulne0 | |- ( ( ( M e. CC /\ M =/= 0 ) /\ ( N e. CC /\ N =/= 0 ) ) -> ( M x. N ) =/= 0 ) |
|
| 14 | 10 12 13 | syl2an | |- ( ( ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( M x. N ) =/= 0 ) |
| 15 | 14 | 3adant1 | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( M x. N ) =/= 0 ) |
| 16 | eqid | |- { n e. NN0 | ( P ^ n ) || ( M x. N ) } = { n e. NN0 | ( P ^ n ) || ( M x. N ) } |
|
| 17 | 16 | pclem | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( ( M x. N ) e. ZZ /\ ( M x. N ) =/= 0 ) ) -> ( { n e. NN0 | ( P ^ n ) || ( M x. N ) } C_ ZZ /\ { n e. NN0 | ( P ^ n ) || ( M x. N ) } =/= (/) /\ E. x e. ZZ A. y e. { n e. NN0 | ( P ^ n ) || ( M x. N ) } y <_ x ) ) |
| 18 | 5 8 15 17 | syl12anc | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( { n e. NN0 | ( P ^ n ) || ( M x. N ) } C_ ZZ /\ { n e. NN0 | ( P ^ n ) || ( M x. N ) } =/= (/) /\ E. x e. ZZ A. y e. { n e. NN0 | ( P ^ n ) || ( M x. N ) } y <_ x ) ) |
| 19 | 18 | simp1d | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> { n e. NN0 | ( P ^ n ) || ( M x. N ) } C_ ZZ ) |
| 20 | 18 | simp3d | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> E. x e. ZZ A. y e. { n e. NN0 | ( P ^ n ) || ( M x. N ) } y <_ x ) |
| 21 | oveq2 | |- ( x = ( S + T ) -> ( P ^ x ) = ( P ^ ( S + T ) ) ) |
|
| 22 | 21 | breq1d | |- ( x = ( S + T ) -> ( ( P ^ x ) || ( M x. N ) <-> ( P ^ ( S + T ) ) || ( M x. N ) ) ) |
| 23 | simp2l | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> M e. ZZ ) |
|
| 24 | simp2r | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> M =/= 0 ) |
|
| 25 | eqid | |- { n e. NN0 | ( P ^ n ) || M } = { n e. NN0 | ( P ^ n ) || M } |
|
| 26 | 25 1 | pcprecl | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ M =/= 0 ) ) -> ( S e. NN0 /\ ( P ^ S ) || M ) ) |
| 27 | 5 23 24 26 | syl12anc | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S e. NN0 /\ ( P ^ S ) || M ) ) |
| 28 | 27 | simpld | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> S e. NN0 ) |
| 29 | simp3l | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> N e. ZZ ) |
|
| 30 | simp3r | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> N =/= 0 ) |
|
| 31 | eqid | |- { n e. NN0 | ( P ^ n ) || N } = { n e. NN0 | ( P ^ n ) || N } |
|
| 32 | 31 2 | pcprecl | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( T e. NN0 /\ ( P ^ T ) || N ) ) |
| 33 | 5 29 30 32 | syl12anc | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( T e. NN0 /\ ( P ^ T ) || N ) ) |
| 34 | 33 | simpld | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> T e. NN0 ) |
| 35 | 28 34 | nn0addcld | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S + T ) e. NN0 ) |
| 36 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 37 | 36 | 3ad2ant1 | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> P e. NN ) |
| 38 | 37 35 | nnexpcld | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ ( S + T ) ) e. NN ) |
| 39 | 38 | nnzd | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ ( S + T ) ) e. ZZ ) |
| 40 | 37 34 | nnexpcld | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ T ) e. NN ) |
| 41 | 40 | nnzd | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ T ) e. ZZ ) |
| 42 | 23 41 | zmulcld | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( M x. ( P ^ T ) ) e. ZZ ) |
| 43 | 37 | nncnd | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> P e. CC ) |
| 44 | 43 34 28 | expaddd | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ ( S + T ) ) = ( ( P ^ S ) x. ( P ^ T ) ) ) |
| 45 | 27 | simprd | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ S ) || M ) |
| 46 | 37 28 | nnexpcld | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ S ) e. NN ) |
| 47 | 46 | nnzd | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ S ) e. ZZ ) |
| 48 | dvdsmulc | |- ( ( ( P ^ S ) e. ZZ /\ M e. ZZ /\ ( P ^ T ) e. ZZ ) -> ( ( P ^ S ) || M -> ( ( P ^ S ) x. ( P ^ T ) ) || ( M x. ( P ^ T ) ) ) ) |
|
| 49 | 47 23 41 48 | syl3anc | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( P ^ S ) || M -> ( ( P ^ S ) x. ( P ^ T ) ) || ( M x. ( P ^ T ) ) ) ) |
| 50 | 45 49 | mpd | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( P ^ S ) x. ( P ^ T ) ) || ( M x. ( P ^ T ) ) ) |
| 51 | 44 50 | eqbrtrd | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ ( S + T ) ) || ( M x. ( P ^ T ) ) ) |
| 52 | 33 | simprd | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ T ) || N ) |
| 53 | dvdscmul | |- ( ( ( P ^ T ) e. ZZ /\ N e. ZZ /\ M e. ZZ ) -> ( ( P ^ T ) || N -> ( M x. ( P ^ T ) ) || ( M x. N ) ) ) |
|
| 54 | 41 29 23 53 | syl3anc | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( P ^ T ) || N -> ( M x. ( P ^ T ) ) || ( M x. N ) ) ) |
| 55 | 52 54 | mpd | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( M x. ( P ^ T ) ) || ( M x. N ) ) |
| 56 | 39 42 8 51 55 | dvdstrd | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ ( S + T ) ) || ( M x. N ) ) |
| 57 | 22 35 56 | elrabd | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S + T ) e. { x e. NN0 | ( P ^ x ) || ( M x. N ) } ) |
| 58 | oveq2 | |- ( x = n -> ( P ^ x ) = ( P ^ n ) ) |
|
| 59 | 58 | breq1d | |- ( x = n -> ( ( P ^ x ) || ( M x. N ) <-> ( P ^ n ) || ( M x. N ) ) ) |
| 60 | 59 | cbvrabv | |- { x e. NN0 | ( P ^ x ) || ( M x. N ) } = { n e. NN0 | ( P ^ n ) || ( M x. N ) } |
| 61 | 57 60 | eleqtrdi | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S + T ) e. { n e. NN0 | ( P ^ n ) || ( M x. N ) } ) |
| 62 | suprzub | |- ( ( { n e. NN0 | ( P ^ n ) || ( M x. N ) } C_ ZZ /\ E. x e. ZZ A. y e. { n e. NN0 | ( P ^ n ) || ( M x. N ) } y <_ x /\ ( S + T ) e. { n e. NN0 | ( P ^ n ) || ( M x. N ) } ) -> ( S + T ) <_ sup ( { n e. NN0 | ( P ^ n ) || ( M x. N ) } , RR , < ) ) |
|
| 63 | 19 20 61 62 | syl3anc | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S + T ) <_ sup ( { n e. NN0 | ( P ^ n ) || ( M x. N ) } , RR , < ) ) |
| 64 | 63 3 | breqtrrdi | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S + T ) <_ U ) |
| 65 | 25 1 | pcprendvds2 | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ M =/= 0 ) ) -> -. P || ( M / ( P ^ S ) ) ) |
| 66 | 5 23 24 65 | syl12anc | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. P || ( M / ( P ^ S ) ) ) |
| 67 | 31 2 | pcprendvds2 | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. P || ( N / ( P ^ T ) ) ) |
| 68 | 5 29 30 67 | syl12anc | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. P || ( N / ( P ^ T ) ) ) |
| 69 | ioran | |- ( -. ( P || ( M / ( P ^ S ) ) \/ P || ( N / ( P ^ T ) ) ) <-> ( -. P || ( M / ( P ^ S ) ) /\ -. P || ( N / ( P ^ T ) ) ) ) |
|
| 70 | 66 68 69 | sylanbrc | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. ( P || ( M / ( P ^ S ) ) \/ P || ( N / ( P ^ T ) ) ) ) |
| 71 | simp1 | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> P e. Prime ) |
|
| 72 | 46 | nnne0d | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ S ) =/= 0 ) |
| 73 | dvdsval2 | |- ( ( ( P ^ S ) e. ZZ /\ ( P ^ S ) =/= 0 /\ M e. ZZ ) -> ( ( P ^ S ) || M <-> ( M / ( P ^ S ) ) e. ZZ ) ) |
|
| 74 | 47 72 23 73 | syl3anc | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( P ^ S ) || M <-> ( M / ( P ^ S ) ) e. ZZ ) ) |
| 75 | 45 74 | mpbid | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( M / ( P ^ S ) ) e. ZZ ) |
| 76 | 40 | nnne0d | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ T ) =/= 0 ) |
| 77 | dvdsval2 | |- ( ( ( P ^ T ) e. ZZ /\ ( P ^ T ) =/= 0 /\ N e. ZZ ) -> ( ( P ^ T ) || N <-> ( N / ( P ^ T ) ) e. ZZ ) ) |
|
| 78 | 41 76 29 77 | syl3anc | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( P ^ T ) || N <-> ( N / ( P ^ T ) ) e. ZZ ) ) |
| 79 | 52 78 | mpbid | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( N / ( P ^ T ) ) e. ZZ ) |
| 80 | euclemma | |- ( ( P e. Prime /\ ( M / ( P ^ S ) ) e. ZZ /\ ( N / ( P ^ T ) ) e. ZZ ) -> ( P || ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) <-> ( P || ( M / ( P ^ S ) ) \/ P || ( N / ( P ^ T ) ) ) ) ) |
|
| 81 | 71 75 79 80 | syl3anc | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P || ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) <-> ( P || ( M / ( P ^ S ) ) \/ P || ( N / ( P ^ T ) ) ) ) ) |
| 82 | 70 81 | mtbird | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. P || ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) ) |
| 83 | 16 3 | pcprecl | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( ( M x. N ) e. ZZ /\ ( M x. N ) =/= 0 ) ) -> ( U e. NN0 /\ ( P ^ U ) || ( M x. N ) ) ) |
| 84 | 5 8 15 83 | syl12anc | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( U e. NN0 /\ ( P ^ U ) || ( M x. N ) ) ) |
| 85 | 84 | simpld | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> U e. NN0 ) |
| 86 | nn0ltp1le | |- ( ( ( S + T ) e. NN0 /\ U e. NN0 ) -> ( ( S + T ) < U <-> ( ( S + T ) + 1 ) <_ U ) ) |
|
| 87 | 35 85 86 | syl2anc | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( S + T ) < U <-> ( ( S + T ) + 1 ) <_ U ) ) |
| 88 | 37 | nnzd | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> P e. ZZ ) |
| 89 | peano2nn0 | |- ( ( S + T ) e. NN0 -> ( ( S + T ) + 1 ) e. NN0 ) |
|
| 90 | 35 89 | syl | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( S + T ) + 1 ) e. NN0 ) |
| 91 | dvdsexp | |- ( ( P e. ZZ /\ ( ( S + T ) + 1 ) e. NN0 /\ U e. ( ZZ>= ` ( ( S + T ) + 1 ) ) ) -> ( P ^ ( ( S + T ) + 1 ) ) || ( P ^ U ) ) |
|
| 92 | 91 | 3expia | |- ( ( P e. ZZ /\ ( ( S + T ) + 1 ) e. NN0 ) -> ( U e. ( ZZ>= ` ( ( S + T ) + 1 ) ) -> ( P ^ ( ( S + T ) + 1 ) ) || ( P ^ U ) ) ) |
| 93 | 88 90 92 | syl2anc | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( U e. ( ZZ>= ` ( ( S + T ) + 1 ) ) -> ( P ^ ( ( S + T ) + 1 ) ) || ( P ^ U ) ) ) |
| 94 | 84 | simprd | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ U ) || ( M x. N ) ) |
| 95 | 37 90 | nnexpcld | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ ( ( S + T ) + 1 ) ) e. NN ) |
| 96 | 95 | nnzd | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ ( ( S + T ) + 1 ) ) e. ZZ ) |
| 97 | 37 85 | nnexpcld | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ U ) e. NN ) |
| 98 | 97 | nnzd | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ U ) e. ZZ ) |
| 99 | dvdstr | |- ( ( ( P ^ ( ( S + T ) + 1 ) ) e. ZZ /\ ( P ^ U ) e. ZZ /\ ( M x. N ) e. ZZ ) -> ( ( ( P ^ ( ( S + T ) + 1 ) ) || ( P ^ U ) /\ ( P ^ U ) || ( M x. N ) ) -> ( P ^ ( ( S + T ) + 1 ) ) || ( M x. N ) ) ) |
|
| 100 | 96 98 8 99 | syl3anc | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( ( P ^ ( ( S + T ) + 1 ) ) || ( P ^ U ) /\ ( P ^ U ) || ( M x. N ) ) -> ( P ^ ( ( S + T ) + 1 ) ) || ( M x. N ) ) ) |
| 101 | 94 100 | mpan2d | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( P ^ ( ( S + T ) + 1 ) ) || ( P ^ U ) -> ( P ^ ( ( S + T ) + 1 ) ) || ( M x. N ) ) ) |
| 102 | 93 101 | syld | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( U e. ( ZZ>= ` ( ( S + T ) + 1 ) ) -> ( P ^ ( ( S + T ) + 1 ) ) || ( M x. N ) ) ) |
| 103 | 90 | nn0zd | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( S + T ) + 1 ) e. ZZ ) |
| 104 | 85 | nn0zd | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> U e. ZZ ) |
| 105 | eluz | |- ( ( ( ( S + T ) + 1 ) e. ZZ /\ U e. ZZ ) -> ( U e. ( ZZ>= ` ( ( S + T ) + 1 ) ) <-> ( ( S + T ) + 1 ) <_ U ) ) |
|
| 106 | 103 104 105 | syl2anc | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( U e. ( ZZ>= ` ( ( S + T ) + 1 ) ) <-> ( ( S + T ) + 1 ) <_ U ) ) |
| 107 | 43 35 | expp1d | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ ( ( S + T ) + 1 ) ) = ( ( P ^ ( S + T ) ) x. P ) ) |
| 108 | 23 | zcnd | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> M e. CC ) |
| 109 | 29 | zcnd | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> N e. CC ) |
| 110 | 108 109 | mulcld | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( M x. N ) e. CC ) |
| 111 | 38 | nncnd | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ ( S + T ) ) e. CC ) |
| 112 | 38 | nnne0d | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ ( S + T ) ) =/= 0 ) |
| 113 | 110 111 112 | divcan2d | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( P ^ ( S + T ) ) x. ( ( M x. N ) / ( P ^ ( S + T ) ) ) ) = ( M x. N ) ) |
| 114 | 44 | oveq2d | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( M x. N ) / ( P ^ ( S + T ) ) ) = ( ( M x. N ) / ( ( P ^ S ) x. ( P ^ T ) ) ) ) |
| 115 | 46 | nncnd | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ S ) e. CC ) |
| 116 | 40 | nncnd | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ T ) e. CC ) |
| 117 | 108 115 109 116 72 76 | divmuldivd | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) = ( ( M x. N ) / ( ( P ^ S ) x. ( P ^ T ) ) ) ) |
| 118 | 114 117 | eqtr4d | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( M x. N ) / ( P ^ ( S + T ) ) ) = ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) ) |
| 119 | 118 | oveq2d | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( P ^ ( S + T ) ) x. ( ( M x. N ) / ( P ^ ( S + T ) ) ) ) = ( ( P ^ ( S + T ) ) x. ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) ) ) |
| 120 | 113 119 | eqtr3d | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( M x. N ) = ( ( P ^ ( S + T ) ) x. ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) ) ) |
| 121 | 107 120 | breq12d | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( P ^ ( ( S + T ) + 1 ) ) || ( M x. N ) <-> ( ( P ^ ( S + T ) ) x. P ) || ( ( P ^ ( S + T ) ) x. ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) ) ) ) |
| 122 | 75 79 | zmulcld | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) e. ZZ ) |
| 123 | dvdscmulr | |- ( ( P e. ZZ /\ ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) e. ZZ /\ ( ( P ^ ( S + T ) ) e. ZZ /\ ( P ^ ( S + T ) ) =/= 0 ) ) -> ( ( ( P ^ ( S + T ) ) x. P ) || ( ( P ^ ( S + T ) ) x. ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) ) <-> P || ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) ) ) |
|
| 124 | 88 122 39 112 123 | syl112anc | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( ( P ^ ( S + T ) ) x. P ) || ( ( P ^ ( S + T ) ) x. ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) ) <-> P || ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) ) ) |
| 125 | 121 124 | bitrd | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( P ^ ( ( S + T ) + 1 ) ) || ( M x. N ) <-> P || ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) ) ) |
| 126 | 102 106 125 | 3imtr3d | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( ( S + T ) + 1 ) <_ U -> P || ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) ) ) |
| 127 | 87 126 | sylbid | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( S + T ) < U -> P || ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) ) ) |
| 128 | 82 127 | mtod | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. ( S + T ) < U ) |
| 129 | 35 | nn0red | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S + T ) e. RR ) |
| 130 | 85 | nn0red | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> U e. RR ) |
| 131 | 129 130 | eqleltd | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( S + T ) = U <-> ( ( S + T ) <_ U /\ -. ( S + T ) < U ) ) ) |
| 132 | 64 128 131 | mpbir2and | |- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S + T ) = U ) |