This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pclem.1 | |- A = { n e. NN0 | ( P ^ n ) || N } |
|
| pclem.2 | |- S = sup ( A , RR , < ) |
||
| Assertion | pcprendvds2 | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. P || ( N / ( P ^ S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pclem.1 | |- A = { n e. NN0 | ( P ^ n ) || N } |
|
| 2 | pclem.2 | |- S = sup ( A , RR , < ) |
|
| 3 | 1 2 | pcprendvds | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. ( P ^ ( S + 1 ) ) || N ) |
| 4 | eluz2nn | |- ( P e. ( ZZ>= ` 2 ) -> P e. NN ) |
|
| 5 | 4 | adantr | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> P e. NN ) |
| 6 | 5 | nnzd | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> P e. ZZ ) |
| 7 | 1 2 | pcprecl | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S e. NN0 /\ ( P ^ S ) || N ) ) |
| 8 | 7 | simprd | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ S ) || N ) |
| 9 | 7 | simpld | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> S e. NN0 ) |
| 10 | 5 9 | nnexpcld | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ S ) e. NN ) |
| 11 | 10 | nnzd | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ S ) e. ZZ ) |
| 12 | 10 | nnne0d | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ S ) =/= 0 ) |
| 13 | simprl | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> N e. ZZ ) |
|
| 14 | dvdsval2 | |- ( ( ( P ^ S ) e. ZZ /\ ( P ^ S ) =/= 0 /\ N e. ZZ ) -> ( ( P ^ S ) || N <-> ( N / ( P ^ S ) ) e. ZZ ) ) |
|
| 15 | 11 12 13 14 | syl3anc | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( P ^ S ) || N <-> ( N / ( P ^ S ) ) e. ZZ ) ) |
| 16 | 8 15 | mpbid | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( N / ( P ^ S ) ) e. ZZ ) |
| 17 | dvdscmul | |- ( ( P e. ZZ /\ ( N / ( P ^ S ) ) e. ZZ /\ ( P ^ S ) e. ZZ ) -> ( P || ( N / ( P ^ S ) ) -> ( ( P ^ S ) x. P ) || ( ( P ^ S ) x. ( N / ( P ^ S ) ) ) ) ) |
|
| 18 | 6 16 11 17 | syl3anc | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P || ( N / ( P ^ S ) ) -> ( ( P ^ S ) x. P ) || ( ( P ^ S ) x. ( N / ( P ^ S ) ) ) ) ) |
| 19 | 5 | nncnd | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> P e. CC ) |
| 20 | 19 9 | expp1d | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ ( S + 1 ) ) = ( ( P ^ S ) x. P ) ) |
| 21 | 20 | eqcomd | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( P ^ S ) x. P ) = ( P ^ ( S + 1 ) ) ) |
| 22 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 23 | 22 | ad2antrl | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> N e. CC ) |
| 24 | 10 | nncnd | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ S ) e. CC ) |
| 25 | 23 24 12 | divcan2d | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( P ^ S ) x. ( N / ( P ^ S ) ) ) = N ) |
| 26 | 21 25 | breq12d | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( ( P ^ S ) x. P ) || ( ( P ^ S ) x. ( N / ( P ^ S ) ) ) <-> ( P ^ ( S + 1 ) ) || N ) ) |
| 27 | 18 26 | sylibd | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P || ( N / ( P ^ S ) ) -> ( P ^ ( S + 1 ) ) || N ) ) |
| 28 | 3 27 | mtod | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. P || ( N / ( P ^ S ) ) ) |