This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014) (Revised by Mario Carneiro, 3-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pcval.1 | |- S = sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) |
|
| pcval.2 | |- T = sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) |
||
| Assertion | pcval | |- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> ( P pCnt N ) = ( iota z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcval.1 | |- S = sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) |
|
| 2 | pcval.2 | |- T = sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) |
|
| 3 | simpr | |- ( ( p = P /\ r = N ) -> r = N ) |
|
| 4 | 3 | eqeq1d | |- ( ( p = P /\ r = N ) -> ( r = 0 <-> N = 0 ) ) |
| 5 | eqeq1 | |- ( r = N -> ( r = ( x / y ) <-> N = ( x / y ) ) ) |
|
| 6 | oveq1 | |- ( p = P -> ( p ^ n ) = ( P ^ n ) ) |
|
| 7 | 6 | breq1d | |- ( p = P -> ( ( p ^ n ) || x <-> ( P ^ n ) || x ) ) |
| 8 | 7 | rabbidv | |- ( p = P -> { n e. NN0 | ( p ^ n ) || x } = { n e. NN0 | ( P ^ n ) || x } ) |
| 9 | 8 | supeq1d | |- ( p = P -> sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) ) |
| 10 | 9 1 | eqtr4di | |- ( p = P -> sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) = S ) |
| 11 | 6 | breq1d | |- ( p = P -> ( ( p ^ n ) || y <-> ( P ^ n ) || y ) ) |
| 12 | 11 | rabbidv | |- ( p = P -> { n e. NN0 | ( p ^ n ) || y } = { n e. NN0 | ( P ^ n ) || y } ) |
| 13 | 12 | supeq1d | |- ( p = P -> sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) |
| 14 | 13 2 | eqtr4di | |- ( p = P -> sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) = T ) |
| 15 | 10 14 | oveq12d | |- ( p = P -> ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) = ( S - T ) ) |
| 16 | 15 | eqeq2d | |- ( p = P -> ( z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) <-> z = ( S - T ) ) ) |
| 17 | 5 16 | bi2anan9r | |- ( ( p = P /\ r = N ) -> ( ( r = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) ) <-> ( N = ( x / y ) /\ z = ( S - T ) ) ) ) |
| 18 | 17 | 2rexbidv | |- ( ( p = P /\ r = N ) -> ( E. x e. ZZ E. y e. NN ( r = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) ) <-> E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) ) |
| 19 | 18 | iotabidv | |- ( ( p = P /\ r = N ) -> ( iota z E. x e. ZZ E. y e. NN ( r = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) ) ) = ( iota z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) ) |
| 20 | 4 19 | ifbieq2d | |- ( ( p = P /\ r = N ) -> if ( r = 0 , +oo , ( iota z E. x e. ZZ E. y e. NN ( r = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) ) ) ) = if ( N = 0 , +oo , ( iota z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) ) ) |
| 21 | df-pc | |- pCnt = ( p e. Prime , r e. QQ |-> if ( r = 0 , +oo , ( iota z E. x e. ZZ E. y e. NN ( r = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) ) ) ) ) |
|
| 22 | pnfex | |- +oo e. _V |
|
| 23 | iotaex | |- ( iota z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) e. _V |
|
| 24 | 22 23 | ifex | |- if ( N = 0 , +oo , ( iota z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) ) e. _V |
| 25 | 20 21 24 | ovmpoa | |- ( ( P e. Prime /\ N e. QQ ) -> ( P pCnt N ) = if ( N = 0 , +oo , ( iota z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) ) ) |
| 26 | ifnefalse | |- ( N =/= 0 -> if ( N = 0 , +oo , ( iota z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) ) = ( iota z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) ) |
|
| 27 | 25 26 | sylan9eq | |- ( ( ( P e. Prime /\ N e. QQ ) /\ N =/= 0 ) -> ( P pCnt N ) = ( iota z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) ) |
| 28 | 27 | anasss | |- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> ( P pCnt N ) = ( iota z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) ) |