This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pclem.1 | |- A = { n e. NN0 | ( P ^ n ) || N } |
|
| pclem.2 | |- S = sup ( A , RR , < ) |
||
| Assertion | pcprecl | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S e. NN0 /\ ( P ^ S ) || N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pclem.1 | |- A = { n e. NN0 | ( P ^ n ) || N } |
|
| 2 | pclem.2 | |- S = sup ( A , RR , < ) |
|
| 3 | 1 | pclem | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( A C_ ZZ /\ A =/= (/) /\ E. y e. ZZ A. z e. A z <_ y ) ) |
| 4 | suprzcl2 | |- ( ( A C_ ZZ /\ A =/= (/) /\ E. y e. ZZ A. z e. A z <_ y ) -> sup ( A , RR , < ) e. A ) |
|
| 5 | 3 4 | syl | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> sup ( A , RR , < ) e. A ) |
| 6 | 2 5 | eqeltrid | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> S e. A ) |
| 7 | oveq2 | |- ( x = S -> ( P ^ x ) = ( P ^ S ) ) |
|
| 8 | 7 | breq1d | |- ( x = S -> ( ( P ^ x ) || N <-> ( P ^ S ) || N ) ) |
| 9 | oveq2 | |- ( n = x -> ( P ^ n ) = ( P ^ x ) ) |
|
| 10 | 9 | breq1d | |- ( n = x -> ( ( P ^ n ) || N <-> ( P ^ x ) || N ) ) |
| 11 | 10 | cbvrabv | |- { n e. NN0 | ( P ^ n ) || N } = { x e. NN0 | ( P ^ x ) || N } |
| 12 | 1 11 | eqtri | |- A = { x e. NN0 | ( P ^ x ) || N } |
| 13 | 8 12 | elrab2 | |- ( S e. A <-> ( S e. NN0 /\ ( P ^ S ) || N ) ) |
| 14 | 6 13 | sylib | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S e. NN0 /\ ( P ^ S ) || N ) ) |