This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: - Lemma for the prime power pre-function's properties. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pclem.1 | |- A = { n e. NN0 | ( P ^ n ) || N } |
|
| Assertion | pclem | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( A C_ ZZ /\ A =/= (/) /\ E. x e. ZZ A. y e. A y <_ x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pclem.1 | |- A = { n e. NN0 | ( P ^ n ) || N } |
|
| 2 | 1 | ssrab3 | |- A C_ NN0 |
| 3 | nn0ssz | |- NN0 C_ ZZ |
|
| 4 | 2 3 | sstri | |- A C_ ZZ |
| 5 | 4 | a1i | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> A C_ ZZ ) |
| 6 | 0nn0 | |- 0 e. NN0 |
|
| 7 | 6 | a1i | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> 0 e. NN0 ) |
| 8 | eluzelcn | |- ( P e. ( ZZ>= ` 2 ) -> P e. CC ) |
|
| 9 | 8 | adantr | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> P e. CC ) |
| 10 | 9 | exp0d | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ 0 ) = 1 ) |
| 11 | 1dvds | |- ( N e. ZZ -> 1 || N ) |
|
| 12 | 11 | ad2antrl | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> 1 || N ) |
| 13 | 10 12 | eqbrtrd | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ 0 ) || N ) |
| 14 | oveq2 | |- ( n = 0 -> ( P ^ n ) = ( P ^ 0 ) ) |
|
| 15 | 14 | breq1d | |- ( n = 0 -> ( ( P ^ n ) || N <-> ( P ^ 0 ) || N ) ) |
| 16 | 15 1 | elrab2 | |- ( 0 e. A <-> ( 0 e. NN0 /\ ( P ^ 0 ) || N ) ) |
| 17 | 7 13 16 | sylanbrc | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> 0 e. A ) |
| 18 | 17 | ne0d | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> A =/= (/) ) |
| 19 | nnssz | |- NN C_ ZZ |
|
| 20 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 21 | 20 | abscld | |- ( N e. ZZ -> ( abs ` N ) e. RR ) |
| 22 | 21 | ad2antrl | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( abs ` N ) e. RR ) |
| 23 | eluzelre | |- ( P e. ( ZZ>= ` 2 ) -> P e. RR ) |
|
| 24 | 23 | adantr | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> P e. RR ) |
| 25 | eluz2gt1 | |- ( P e. ( ZZ>= ` 2 ) -> 1 < P ) |
|
| 26 | 25 | adantr | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> 1 < P ) |
| 27 | expnbnd | |- ( ( ( abs ` N ) e. RR /\ P e. RR /\ 1 < P ) -> E. x e. NN ( abs ` N ) < ( P ^ x ) ) |
|
| 28 | 22 24 26 27 | syl3anc | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> E. x e. NN ( abs ` N ) < ( P ^ x ) ) |
| 29 | simprr | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( x e. NN /\ y e. A ) ) -> y e. A ) |
|
| 30 | oveq2 | |- ( n = y -> ( P ^ n ) = ( P ^ y ) ) |
|
| 31 | 30 | breq1d | |- ( n = y -> ( ( P ^ n ) || N <-> ( P ^ y ) || N ) ) |
| 32 | 31 1 | elrab2 | |- ( y e. A <-> ( y e. NN0 /\ ( P ^ y ) || N ) ) |
| 33 | 29 32 | sylib | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( x e. NN /\ y e. A ) ) -> ( y e. NN0 /\ ( P ^ y ) || N ) ) |
| 34 | 33 | simprd | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( x e. NN /\ y e. A ) ) -> ( P ^ y ) || N ) |
| 35 | eluz2nn | |- ( P e. ( ZZ>= ` 2 ) -> P e. NN ) |
|
| 36 | 35 | ad2antrr | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( x e. NN /\ y e. A ) ) -> P e. NN ) |
| 37 | 33 | simpld | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( x e. NN /\ y e. A ) ) -> y e. NN0 ) |
| 38 | 36 37 | nnexpcld | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( x e. NN /\ y e. A ) ) -> ( P ^ y ) e. NN ) |
| 39 | 38 | nnzd | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( x e. NN /\ y e. A ) ) -> ( P ^ y ) e. ZZ ) |
| 40 | simplrl | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( x e. NN /\ y e. A ) ) -> N e. ZZ ) |
|
| 41 | simplrr | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( x e. NN /\ y e. A ) ) -> N =/= 0 ) |
|
| 42 | dvdsleabs | |- ( ( ( P ^ y ) e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( ( P ^ y ) || N -> ( P ^ y ) <_ ( abs ` N ) ) ) |
|
| 43 | 39 40 41 42 | syl3anc | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( x e. NN /\ y e. A ) ) -> ( ( P ^ y ) || N -> ( P ^ y ) <_ ( abs ` N ) ) ) |
| 44 | 34 43 | mpd | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( x e. NN /\ y e. A ) ) -> ( P ^ y ) <_ ( abs ` N ) ) |
| 45 | 38 | nnred | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( x e. NN /\ y e. A ) ) -> ( P ^ y ) e. RR ) |
| 46 | 22 | adantr | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( x e. NN /\ y e. A ) ) -> ( abs ` N ) e. RR ) |
| 47 | 23 | ad2antrr | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( x e. NN /\ y e. A ) ) -> P e. RR ) |
| 48 | nnnn0 | |- ( x e. NN -> x e. NN0 ) |
|
| 49 | 48 | ad2antrl | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( x e. NN /\ y e. A ) ) -> x e. NN0 ) |
| 50 | 47 49 | reexpcld | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( x e. NN /\ y e. A ) ) -> ( P ^ x ) e. RR ) |
| 51 | lelttr | |- ( ( ( P ^ y ) e. RR /\ ( abs ` N ) e. RR /\ ( P ^ x ) e. RR ) -> ( ( ( P ^ y ) <_ ( abs ` N ) /\ ( abs ` N ) < ( P ^ x ) ) -> ( P ^ y ) < ( P ^ x ) ) ) |
|
| 52 | 45 46 50 51 | syl3anc | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( x e. NN /\ y e. A ) ) -> ( ( ( P ^ y ) <_ ( abs ` N ) /\ ( abs ` N ) < ( P ^ x ) ) -> ( P ^ y ) < ( P ^ x ) ) ) |
| 53 | 44 52 | mpand | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( x e. NN /\ y e. A ) ) -> ( ( abs ` N ) < ( P ^ x ) -> ( P ^ y ) < ( P ^ x ) ) ) |
| 54 | 37 | nn0zd | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( x e. NN /\ y e. A ) ) -> y e. ZZ ) |
| 55 | nnz | |- ( x e. NN -> x e. ZZ ) |
|
| 56 | 55 | ad2antrl | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( x e. NN /\ y e. A ) ) -> x e. ZZ ) |
| 57 | 25 | ad2antrr | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( x e. NN /\ y e. A ) ) -> 1 < P ) |
| 58 | 47 54 56 57 | ltexp2d | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( x e. NN /\ y e. A ) ) -> ( y < x <-> ( P ^ y ) < ( P ^ x ) ) ) |
| 59 | 53 58 | sylibrd | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( x e. NN /\ y e. A ) ) -> ( ( abs ` N ) < ( P ^ x ) -> y < x ) ) |
| 60 | 37 | nn0red | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( x e. NN /\ y e. A ) ) -> y e. RR ) |
| 61 | nnre | |- ( x e. NN -> x e. RR ) |
|
| 62 | 61 | ad2antrl | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( x e. NN /\ y e. A ) ) -> x e. RR ) |
| 63 | ltle | |- ( ( y e. RR /\ x e. RR ) -> ( y < x -> y <_ x ) ) |
|
| 64 | 60 62 63 | syl2anc | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( x e. NN /\ y e. A ) ) -> ( y < x -> y <_ x ) ) |
| 65 | 59 64 | syld | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( x e. NN /\ y e. A ) ) -> ( ( abs ` N ) < ( P ^ x ) -> y <_ x ) ) |
| 66 | 65 | anassrs | |- ( ( ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ x e. NN ) /\ y e. A ) -> ( ( abs ` N ) < ( P ^ x ) -> y <_ x ) ) |
| 67 | 66 | ralrimdva | |- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ x e. NN ) -> ( ( abs ` N ) < ( P ^ x ) -> A. y e. A y <_ x ) ) |
| 68 | 67 | reximdva | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( E. x e. NN ( abs ` N ) < ( P ^ x ) -> E. x e. NN A. y e. A y <_ x ) ) |
| 69 | 28 68 | mpd | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> E. x e. NN A. y e. A y <_ x ) |
| 70 | ssrexv | |- ( NN C_ ZZ -> ( E. x e. NN A. y e. A y <_ x -> E. x e. ZZ A. y e. A y <_ x ) ) |
|
| 71 | 19 69 70 | mpsyl | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> E. x e. ZZ A. y e. A y <_ x ) |
| 72 | 5 18 71 | 3jca | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( A C_ ZZ /\ A =/= (/) /\ E. x e. ZZ A. y e. A y <_ x ) ) |