This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An unordered pair is finite. For a shorter proof using ax-un , see prfiALT . (Contributed by NM, 22-Aug-2008) Avoid ax-11 , ax-un . (Revised by BTernaryTau, 13-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prfi | |- { A , B } e. Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prprc1 | |- ( -. A e. _V -> { A , B } = { B } ) |
|
| 2 | snfi | |- { B } e. Fin |
|
| 3 | 1 2 | eqeltrdi | |- ( -. A e. _V -> { A , B } e. Fin ) |
| 4 | prprc2 | |- ( -. B e. _V -> { A , B } = { A } ) |
|
| 5 | snfi | |- { A } e. Fin |
|
| 6 | 4 5 | eqeltrdi | |- ( -. B e. _V -> { A , B } e. Fin ) |
| 7 | 2onn | |- 2o e. _om |
|
| 8 | simp1 | |- ( ( A e. _V /\ B e. _V /\ -. A = B ) -> A e. _V ) |
|
| 9 | simp2 | |- ( ( A e. _V /\ B e. _V /\ -. A = B ) -> B e. _V ) |
|
| 10 | simp3 | |- ( ( A e. _V /\ B e. _V /\ -. A = B ) -> -. A = B ) |
|
| 11 | 8 9 10 | enpr2d | |- ( ( A e. _V /\ B e. _V /\ -. A = B ) -> { A , B } ~~ 2o ) |
| 12 | breq2 | |- ( x = 2o -> ( { A , B } ~~ x <-> { A , B } ~~ 2o ) ) |
|
| 13 | 12 | rspcev | |- ( ( 2o e. _om /\ { A , B } ~~ 2o ) -> E. x e. _om { A , B } ~~ x ) |
| 14 | 7 11 13 | sylancr | |- ( ( A e. _V /\ B e. _V /\ -. A = B ) -> E. x e. _om { A , B } ~~ x ) |
| 15 | isfi | |- ( { A , B } e. Fin <-> E. x e. _om { A , B } ~~ x ) |
|
| 16 | 14 15 | sylibr | |- ( ( A e. _V /\ B e. _V /\ -. A = B ) -> { A , B } e. Fin ) |
| 17 | 16 | 3expia | |- ( ( A e. _V /\ B e. _V ) -> ( -. A = B -> { A , B } e. Fin ) ) |
| 18 | dfsn2 | |- { A } = { A , A } |
|
| 19 | preq2 | |- ( A = B -> { A , A } = { A , B } ) |
|
| 20 | 18 19 | eqtr2id | |- ( A = B -> { A , B } = { A } ) |
| 21 | 20 5 | eqeltrdi | |- ( A = B -> { A , B } e. Fin ) |
| 22 | 17 21 | pm2.61d2 | |- ( ( A e. _V /\ B e. _V ) -> { A , B } e. Fin ) |
| 23 | 3 6 22 | ecase | |- { A , B } e. Fin |