This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the dyadic rational function F . (Contributed by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dyadmbl.1 | |- F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) |
|
| Assertion | dyadval | |- ( ( A e. ZZ /\ B e. NN0 ) -> ( A F B ) = <. ( A / ( 2 ^ B ) ) , ( ( A + 1 ) / ( 2 ^ B ) ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dyadmbl.1 | |- F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) |
|
| 2 | id | |- ( x = A -> x = A ) |
|
| 3 | oveq2 | |- ( y = B -> ( 2 ^ y ) = ( 2 ^ B ) ) |
|
| 4 | 2 3 | oveqan12d | |- ( ( x = A /\ y = B ) -> ( x / ( 2 ^ y ) ) = ( A / ( 2 ^ B ) ) ) |
| 5 | oveq1 | |- ( x = A -> ( x + 1 ) = ( A + 1 ) ) |
|
| 6 | 5 3 | oveqan12d | |- ( ( x = A /\ y = B ) -> ( ( x + 1 ) / ( 2 ^ y ) ) = ( ( A + 1 ) / ( 2 ^ B ) ) ) |
| 7 | 4 6 | opeq12d | |- ( ( x = A /\ y = B ) -> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. = <. ( A / ( 2 ^ B ) ) , ( ( A + 1 ) / ( 2 ^ B ) ) >. ) |
| 8 | opex | |- <. ( A / ( 2 ^ B ) ) , ( ( A + 1 ) / ( 2 ^ B ) ) >. e. _V |
|
| 9 | 7 1 8 | ovmpoa | |- ( ( A e. ZZ /\ B e. NN0 ) -> ( A F B ) = <. ( A / ( 2 ^ B ) ) , ( ( A + 1 ) / ( 2 ^ B ) ) >. ) |