This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reciprocal of exponentiation with a base greater than 1 has no positive lower bound. (Contributed by NM, 18-Jul-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expnlbnd | |- ( ( A e. RR+ /\ B e. RR /\ 1 < B ) -> E. k e. NN ( 1 / ( B ^ k ) ) < A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre | |- ( A e. RR+ -> A e. RR ) |
|
| 2 | rpne0 | |- ( A e. RR+ -> A =/= 0 ) |
|
| 3 | 1 2 | rereccld | |- ( A e. RR+ -> ( 1 / A ) e. RR ) |
| 4 | expnbnd | |- ( ( ( 1 / A ) e. RR /\ B e. RR /\ 1 < B ) -> E. k e. NN ( 1 / A ) < ( B ^ k ) ) |
|
| 5 | 3 4 | syl3an1 | |- ( ( A e. RR+ /\ B e. RR /\ 1 < B ) -> E. k e. NN ( 1 / A ) < ( B ^ k ) ) |
| 6 | rpregt0 | |- ( A e. RR+ -> ( A e. RR /\ 0 < A ) ) |
|
| 7 | 6 | 3ad2ant1 | |- ( ( A e. RR+ /\ B e. RR /\ 1 < B ) -> ( A e. RR /\ 0 < A ) ) |
| 8 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
| 9 | reexpcl | |- ( ( B e. RR /\ k e. NN0 ) -> ( B ^ k ) e. RR ) |
|
| 10 | 8 9 | sylan2 | |- ( ( B e. RR /\ k e. NN ) -> ( B ^ k ) e. RR ) |
| 11 | 10 | adantlr | |- ( ( ( B e. RR /\ 1 < B ) /\ k e. NN ) -> ( B ^ k ) e. RR ) |
| 12 | simpll | |- ( ( ( B e. RR /\ 1 < B ) /\ k e. NN ) -> B e. RR ) |
|
| 13 | nnz | |- ( k e. NN -> k e. ZZ ) |
|
| 14 | 13 | adantl | |- ( ( ( B e. RR /\ 1 < B ) /\ k e. NN ) -> k e. ZZ ) |
| 15 | 0lt1 | |- 0 < 1 |
|
| 16 | 0re | |- 0 e. RR |
|
| 17 | 1re | |- 1 e. RR |
|
| 18 | lttr | |- ( ( 0 e. RR /\ 1 e. RR /\ B e. RR ) -> ( ( 0 < 1 /\ 1 < B ) -> 0 < B ) ) |
|
| 19 | 16 17 18 | mp3an12 | |- ( B e. RR -> ( ( 0 < 1 /\ 1 < B ) -> 0 < B ) ) |
| 20 | 15 19 | mpani | |- ( B e. RR -> ( 1 < B -> 0 < B ) ) |
| 21 | 20 | imp | |- ( ( B e. RR /\ 1 < B ) -> 0 < B ) |
| 22 | 21 | adantr | |- ( ( ( B e. RR /\ 1 < B ) /\ k e. NN ) -> 0 < B ) |
| 23 | expgt0 | |- ( ( B e. RR /\ k e. ZZ /\ 0 < B ) -> 0 < ( B ^ k ) ) |
|
| 24 | 12 14 22 23 | syl3anc | |- ( ( ( B e. RR /\ 1 < B ) /\ k e. NN ) -> 0 < ( B ^ k ) ) |
| 25 | 11 24 | jca | |- ( ( ( B e. RR /\ 1 < B ) /\ k e. NN ) -> ( ( B ^ k ) e. RR /\ 0 < ( B ^ k ) ) ) |
| 26 | 25 | 3adantl1 | |- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ k e. NN ) -> ( ( B ^ k ) e. RR /\ 0 < ( B ^ k ) ) ) |
| 27 | ltrec1 | |- ( ( ( A e. RR /\ 0 < A ) /\ ( ( B ^ k ) e. RR /\ 0 < ( B ^ k ) ) ) -> ( ( 1 / A ) < ( B ^ k ) <-> ( 1 / ( B ^ k ) ) < A ) ) |
|
| 28 | 7 26 27 | syl2an2r | |- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ k e. NN ) -> ( ( 1 / A ) < ( B ^ k ) <-> ( 1 / ( B ^ k ) ) < A ) ) |
| 29 | 28 | rexbidva | |- ( ( A e. RR+ /\ B e. RR /\ 1 < B ) -> ( E. k e. NN ( 1 / A ) < ( B ^ k ) <-> E. k e. NN ( 1 / ( B ^ k ) ) < A ) ) |
| 30 | 5 29 | mpbid | |- ( ( A e. RR+ /\ B e. RR /\ 1 < B ) -> E. k e. NN ( 1 / ( B ^ k ) ) < A ) |