This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal class is either its union or the successor of its union. If we adopt the view that zero is a limit ordinal, this means every ordinal class is either a limit or a successor. (Contributed by NM, 13-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | orduniorsuc | |- ( Ord A -> ( A = U. A \/ A = suc U. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orduniss | |- ( Ord A -> U. A C_ A ) |
|
| 2 | orduni | |- ( Ord A -> Ord U. A ) |
|
| 3 | ordelssne | |- ( ( Ord U. A /\ Ord A ) -> ( U. A e. A <-> ( U. A C_ A /\ U. A =/= A ) ) ) |
|
| 4 | 2 3 | mpancom | |- ( Ord A -> ( U. A e. A <-> ( U. A C_ A /\ U. A =/= A ) ) ) |
| 5 | 4 | biimprd | |- ( Ord A -> ( ( U. A C_ A /\ U. A =/= A ) -> U. A e. A ) ) |
| 6 | 1 5 | mpand | |- ( Ord A -> ( U. A =/= A -> U. A e. A ) ) |
| 7 | ordsucss | |- ( Ord A -> ( U. A e. A -> suc U. A C_ A ) ) |
|
| 8 | 6 7 | syld | |- ( Ord A -> ( U. A =/= A -> suc U. A C_ A ) ) |
| 9 | ordsucuni | |- ( Ord A -> A C_ suc U. A ) |
|
| 10 | 8 9 | jctild | |- ( Ord A -> ( U. A =/= A -> ( A C_ suc U. A /\ suc U. A C_ A ) ) ) |
| 11 | df-ne | |- ( A =/= U. A <-> -. A = U. A ) |
|
| 12 | necom | |- ( A =/= U. A <-> U. A =/= A ) |
|
| 13 | 11 12 | bitr3i | |- ( -. A = U. A <-> U. A =/= A ) |
| 14 | eqss | |- ( A = suc U. A <-> ( A C_ suc U. A /\ suc U. A C_ A ) ) |
|
| 15 | 10 13 14 | 3imtr4g | |- ( Ord A -> ( -. A = U. A -> A = suc U. A ) ) |
| 16 | 15 | orrd | |- ( Ord A -> ( A = U. A \/ A = suc U. A ) ) |