This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordinal exponentiation with zero exponent. Definition 8.30 of TakeutiZaring p. 67. Definition 2.6 of Schloeder p. 4. (Contributed by NM, 31-Dec-2004) (Revised by Mario Carneiro, 8-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oe0 | |- ( A e. On -> ( A ^o (/) ) = 1o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( A = (/) -> ( A ^o (/) ) = ( (/) ^o (/) ) ) |
|
| 2 | oe0m0 | |- ( (/) ^o (/) ) = 1o |
|
| 3 | 1 2 | eqtrdi | |- ( A = (/) -> ( A ^o (/) ) = 1o ) |
| 4 | 3 | adantl | |- ( ( A e. On /\ A = (/) ) -> ( A ^o (/) ) = 1o ) |
| 5 | 0elon | |- (/) e. On |
|
| 6 | oevn0 | |- ( ( ( A e. On /\ (/) e. On ) /\ (/) e. A ) -> ( A ^o (/) ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` (/) ) ) |
|
| 7 | 5 6 | mpanl2 | |- ( ( A e. On /\ (/) e. A ) -> ( A ^o (/) ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` (/) ) ) |
| 8 | 1oex | |- 1o e. _V |
|
| 9 | 8 | rdg0 | |- ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` (/) ) = 1o |
| 10 | 7 9 | eqtrdi | |- ( ( A e. On /\ (/) e. A ) -> ( A ^o (/) ) = 1o ) |
| 11 | 10 | adantll | |- ( ( ( A e. On /\ A e. On ) /\ (/) e. A ) -> ( A ^o (/) ) = 1o ) |
| 12 | 4 11 | oe0lem | |- ( ( A e. On /\ A e. On ) -> ( A ^o (/) ) = 1o ) |
| 13 | 12 | anidms | |- ( A e. On -> ( A ^o (/) ) = 1o ) |