This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal equal to its own union is either zero or a limit ordinal. (Contributed by NM, 1-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unizlim | |- ( Ord A -> ( A = U. A <-> ( A = (/) \/ Lim A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne | |- ( A =/= (/) <-> -. A = (/) ) |
|
| 2 | df-lim | |- ( Lim A <-> ( Ord A /\ A =/= (/) /\ A = U. A ) ) |
|
| 3 | 2 | biimpri | |- ( ( Ord A /\ A =/= (/) /\ A = U. A ) -> Lim A ) |
| 4 | 3 | 3exp | |- ( Ord A -> ( A =/= (/) -> ( A = U. A -> Lim A ) ) ) |
| 5 | 1 4 | biimtrrid | |- ( Ord A -> ( -. A = (/) -> ( A = U. A -> Lim A ) ) ) |
| 6 | 5 | com23 | |- ( Ord A -> ( A = U. A -> ( -. A = (/) -> Lim A ) ) ) |
| 7 | 6 | imp | |- ( ( Ord A /\ A = U. A ) -> ( -. A = (/) -> Lim A ) ) |
| 8 | 7 | orrd | |- ( ( Ord A /\ A = U. A ) -> ( A = (/) \/ Lim A ) ) |
| 9 | 8 | ex | |- ( Ord A -> ( A = U. A -> ( A = (/) \/ Lim A ) ) ) |
| 10 | uni0 | |- U. (/) = (/) |
|
| 11 | 10 | eqcomi | |- (/) = U. (/) |
| 12 | id | |- ( A = (/) -> A = (/) ) |
|
| 13 | unieq | |- ( A = (/) -> U. A = U. (/) ) |
|
| 14 | 11 12 13 | 3eqtr4a | |- ( A = (/) -> A = U. A ) |
| 15 | limuni | |- ( Lim A -> A = U. A ) |
|
| 16 | 14 15 | jaoi | |- ( ( A = (/) \/ Lim A ) -> A = U. A ) |
| 17 | 9 16 | impbid1 | |- ( Ord A -> ( A = U. A <-> ( A = (/) \/ Lim A ) ) ) |